Análisis de las propiedades físicas y químicas de zanahoria deshidratada por ósmosis y secado convectivo

Luz Elena Ramírez Gómez

Resumen


En este trabajo se modificaron las características naturales de la zanahoria (Daucus carota L.) aplicando de forma consecutiva procesos de deshidratación osmótica y secado por aire caliente. En particular, se estudió el efecto de una solución hipertónica de sacarosa concentrada a 50-60 % p/p y una temperatura de secado de 60 °C, sobre las propiedades físicas y químicas del vegetal. Las muestras deshidratadas se analizaron comparativamente frente al alimento en fresco mediante la determinación de la humedad, actividad de agua, sólidos solubles, pH, porcentaje de acidez, color y resistencia a la compresión. Se encontró que el proceso de deshidratación combinado promueve una reducción en el peso de la zanahoria mayor al 70 %, actividad de agua por debajo de 0,4, acidez cercana al 2 % y sólidos solubles entre 28 y 35 ºBx, sin modificar significativamente el color natural del alimento.

PALABRAS CLAVE: Deshidratación, Solución hipertónica, Aire caliente, Vegetal


Texto completo:

PDF

Referencias


Ahmed, I., Qazi, I.M. y Jamal, S. Developments in osmotic dehydration technique for the preservation of fruits and vegetables. (2016). Innovative Food Science and Emerging Technologies. 34: 29-43.

Arscott, S.A. And Tanumihardjo, S.A. Carrots of many colors provide basic nutrition and bioavailable phytochemicals acting as a functional food. (2010). Comprehensive Reviews in Food Science and Food Safety. 9: 223–239.

Bradley, R.J. Food Analysis. USA: Springer Science+Business Media, 2010. p. 85-107.

Chou, S.K. y Chua, K.J. New hybrid drying technologies for heat sensitive foodstuffs. (2001). Trends in Food Science & Technology. 12(10): 359–369.

Della Rocca, P.A., Roche, L.A. y Mascheroni, R.H. Estudio de la transferencia de agua durante la deshidratación osmótica de zanahoria. (2013). Proyecciones. 11(2): 81-91.

Dixon, G.M. y Jen, J.J. Changes of sugar and acid in osmovac dried apple slices. (1977). Journal of Food Science. 42: 1126-1131.

Kowalski, S.J., Szadnziska, J. y Łechtanska, J. Non-stationary drying of carrot: Effect on product quality. (2013). Journal of Food Engineering. 118: 393–399.

Lerici, C.L., Pinnavaia, G., Dalla-Rosa, M. y Bartolucci, L. Osmotic dehydration of fruit: influence of osmotic agents on drying behaviour and product. (1985). Journal of Food Science. 50: 1217-1219.

Lewicki, P.P. Design of hot air drying for better foods. (2006). Trends in Food Science & Technology. 17(4): 153–163.

Mihoubi, D., Timoumi, S. y Zagrouba, F. Modelling of convective drying of carrot slices with IR heat source. (2009). Chemical Engineering and Processing. 48: 808–815.

Nakagawa, K. y Ochiai, T. A mathematical model of multi-dimensional freeze-drying for food products. (2015). Journal of Food Engineering. 161: 55–67.

Nanjundaswamy, A.M., Radhakrishnaiah, S.G., Balachandran, C., Saroja, S. y Murthy, R.K. Studies on development of new categories of dehydrated products from indigenous fruits. (1978). Indian Food Packer. 22: 91–93.

Pacheco-Angulo, H., Herman-Lara, E., García-Alvarado, M.A. And Ruiz-López, I.I. Mass transfer modeling in osmotic dehydration: Equilibrium characteristics and process dynamics under variable solution concentration and convective boundary. (2016). Food and Bioproducts Processing. 97: 88–99.

Pascau. J. And Mateos, J. Image processing with ImageJ. (2013). Disponible en: http://imagej.nih.gov/ij/docs/index.html

Raoult-Wack, A.L. Advances in osmotic dehydration. (1994). Trends in Food Science & Technology. 5: 255-260.

Rastogi, N.K., Raghavarao, K. y Niranjan, K. Chapter 11: Recent Developments in Osmotic Dehydration. (2014). Emerging Technologies for Food Processing. 181-212.

Revaskar, V., Sharma, G.P., Verma, R.C., Jain, S.K. And Chahar, V.K. Drying behaviour y energy requirement for dehydration of white onion slices. (2007). International Journal of Food Engineering. 3(5): 1-16.

Sadler, G.D. y Murphy, P.A. Food Analysis. USA: Springer Science+Business Media, 2010. p. 219-230.

Sanz, J.C. y Gallego, R. Diccionario Akal del Color. Akal, 2001, p. 600-650.

Sharma, K.D., Karki, S., Thakur, N.S. y Attri, S. Chemical composition, functional properties and processing of carrot – a review. (2012). Journal of Food Science and Technology. 49(1): 22–32.

Simal, S., Benedito, J., Sanchez, E.S. y Rossello, C. Use of ultrasound to increase ass transport rates during osmotic dehydration. (1998). Journal of Food Engineering. 36: 323-336.

Singh, B., Panesar, P.S., Nanda, V. y Kennedy, J.F. Optimization of osmotic dehydration process of carrot cubes in mixtures of sucrose and sodium chloride solutions. (2010). Food Chemistry. 123: 590-600.

Singh, C., Sharma, H.K. y Sarkar, B.C. Influence of process conditions on the mass transfer during osmotic dehydration of coated pineapple samples. (2010). Journal of Food Processing and Preservation. 34: 700-714.

Singh, P., Kulshrestha, K. y Kumar, S. Effect of storage on β-carotene content and microbial quality of dehydrated carrot products. (2013). Food Bioscience. 2: 39–45.

Sutar, P.P. y Prasad, S. Optimization of osmotic dehydration of carrots under atmospheric and pulsed microwave vacuum conditions. (2011). Drying Technology. 29: 371-380.

Torregginni, D. Osmotic dehydration in fruits and vegetable processing. (1993). Food Research International. 26: 59-68.

Torres, J.D., Talens, P., Carot, J.M., Chiralt, A. y Escriche, I. Volatile profile of mango (Mangifera indica L.), as affected by osmotic dehydration. (2007). Food Chemistry. 101: 219-228.

Vázquez-Vila, M.J., Chenlo-Romero, F., Moreira-Martínez, R. y Pacios-Penelas, B. Dehydration kinetics of carrots (Daucus carota L.) in osmotic and air convective drying processes. (2009). Spanish Journal of Agricultural Research. 7(4): 869-875.

Vega-Mercado, H., Angora-Nieto, M.M. y Bartosa-Cánovas, G.V. (2001). Advanced in dehydration of food. Journal of Food Engineering. 49: 271–89.

Vega-Mercado, H., Angora-Nieto, M.M. y Bartosa-Cánovas, G.V. Advanced in dehydration of food. (2001). Journal of Food Engineering. 49: 271–289.




DOI: https://doi.org/10.24054/16927125.v2.n2.2016.2298

Enlaces refback

  • No hay ningún enlace refback.