Uso del ultrasonido y su influencia en las propiedades del huevo entero líquido

Victor Manuel Gelvez Ordoñez, S. Hernandez Gonzalez

Resumen


Se estudió en el huevo entero líquido el efecto del tratamiento con Ultrasonido (US) a 37 KHz con una potencia de 80W a 20 y 45°C durante 5 y 5+5min con un período de descanso de 5 min en mitad del tiempo de exposición, sobre pH, propiedades funcionales (capacidad espumante, emulsificante y gelificación) y la propiedades reológicas de color y textura. Los efectos se evaluaron en huevo comercial fresco de 1 a 3 días de postura almacenados a temperatura ambiente (16±2°C). Los datos obtenidos se analizaron mediante el análisis de varianza, (ANOVA) un factor, aplicando la prueba de Diferencias Mínimas Significativas (DMS), para observar diferencias significativa (p≤0,05) entre las medias de las muestras tratadas y sin tratar. Los resultados obtenidos, evidenció efectos significativos en las propiedades estudiadas de acuerdo con la temperatura y tiempo de tratamiento; generando cambios en las propiedades funcionales estudiadas; y mejorando en la capacidad de espumado, emulsionado, gelificación, la textura instrumental, e incrementando dureza 1 y 2, cohesividad, elasticidad, gomosidad, masticabilidad, adhesividad, firmeza, y mejorando, además, el color y la apariencia del gel amarillo brillante, liso, homogéneo y más elástico que se recupera rápidamente a 50% de compresión. Estos efectos positivos harían del US y CM una excelente alternativa para el mejoramiento y desarrollo de la industria alimenticia, y específicamente de productos que requieran el mejoramiento de estas propiedades.

Texto completo:

132-144

Referencias


Butz, P; Tauscher, B. (2002). Emerging technologies: chemical aspects. J. Food Research International. (35). p. 279 – 284.

Coffmann, C.N; García, V. (1977). Functional properties and amino acid content of a protein isolated from mung bean flour. J. Food Techno. (12). p. 473 -484.

Ferreira, L.F.S; del Mastro, N.L. (1998). Rhealogical Changes in irradiated chicken eggs. Radiat. Phys. Chem. 52 (6). p. 59 -62.

Floros, J.D; Liang, H. (1994). Acoustically assisted diffusion through membranes and biomaterials. J. Food Technology. (48). p. 79 – 84.

Gélvez, V. M. (2005). Elaboración de crema de huevo mediante alta presión e irradiación. Tesis doctoral Universidad Autónoma de Barcelona. p.59 – 67.

Guilmineau, F.; Kulozik U. (2006). Impact of a thermal treatment on the emulsifying properties of egg yolk. Part 1: Effect of the heating time. J. Food Hydrocolloids. (20). p.1105–1113

Gunasekaran, S; Chiyung, A. (1994). Evaluating milk coagulation with ultrasonics. J. Food Technol. 48. (12). p. 74 – 78.

Güzey, D. (2002). Modifi cation of Protein Structure and Functionality Using High-Intensity Ultrasound. A Thesis Presented for the Masters of Science Degree. The University of Tennessee, Knoxville. p. 91-92.

Hayakawa, S; Nakai, S. (1985).Contribution of hydrophobicit and, net charge, and sulfhydryl groups to thermal properties of ovalbumin Can. Inst. Food Sci. Technol. J. (18). p. 290-295.

Hoover, D.G. (2000). Kinetics of microbial inactivation for alternative food processing technologies: ultrasound. Journal of Food Science. p. 93 – 95 (Supl.).

Kiosseoglou, V. (2003). Egg yolk protein gels and emulsions. Opinion in Colloid and Interface Science (8). p. 365 –370.

Krause, J.P; Buchheim, W. (1994). Ultrastructure of o/w emulsions stabilized by faba bean protein isolates. J. Nahrung (38). p. 455-463.

Lannas, S; DA Silva, C; Estellera, M.S; Orlandi de Lima, A.C. (2006). Color measurement in hamburger buns with fat and sugar replacers LWT (39). p.184 – 187.

Lee, D.U. (2002). Applicacition of combined non-thermal treatments for the processing of liquid whole egg. Tesis doctoral: Von der FakultätIII-Prozesswissenschaften der Technischen Univertsität Berlin.

Leighton, T. (1998). The principles of cavitation. In M.J.W. Povey, and T.J. Mason (Eds.). Ultrasound in food processing. p. 151 – 178.

LI- Chan, E.G; Powrie, W.D; Nakai, S. (1995). The chemistry of cytogenes in whole egg and egg yolk powders and in liquid eggs and egg products. In: Science (67). p. 2952 - 2956.

LI, M. K; Fogler. H. S. (1978). Acoustic emulsifi cation. Part 1. The instabilit And of the oil-water interface to form the initial droplets. J. Fluids Mech. (88).p. 499-511.

Mine, Y. (1995). Recent advances in the understying of egg white protein functionality. Trends in Food Science and Technology. (6). p. 225 - 232.

Nakamura, R; DOI, E. (2000). Egg processing. In Food Proteins. Processing Applications; S. Nakai; H. W. Modler, Eds.; Wiley-VCH, New York. p. 171 -207.

Onda, M; Tatsumi, E; Takahashi, N; Hirose, M. (1997). Refolding of urea-denatured ovalbumin that comprises non-native disulfide isomers. J. Biochem. (122). p. 83-89.

Phillips, L.G; German, J.B; O’neill, T.E; Foegeding, E.A; Harwalkar, V. R; Kilara, A; et al. (1990). Styardized procedure for measuring foaming properties of three proteins, a collaborative study. Journal of Food Science. 55 (5). p. 1441 - 1444 - 1453.

Piyasena, P; Mohareb, E.R.C. (2003). Inactivation of microbes using ultrasound: a review McKellar International Journal of Food Microbiology. (87). p. 207– 216.

Rhim, J.W; Jones, V.A; Swartzel, K.R. (1988). Initial whitening phenomenon of skim milk on heating. Lebensmittel Wissenschaft and Technologie, 21 (6). p. 339-341.

Rumbo, M; Chirdo, F.G; Fossati, C.A; Anon, M.C.(1996). Analysis of Structural Properties and Immunochemical Reactivity of Heat-Treated Ovalbumin J. Agric. Food Chem. (44). p. 3793 - 3798.

Saio, K; Kajikawa, M; Watanabe, T. (1971). Thermal Coagulation of Egg Albumin. J. Agric. Biol. Chem. (35).p. 890.

Sajas, J.F; Zaandas, Y; Gorbatov, E.W.M; Gorbatov, V.M. (1978). Use of ultrasonics in meat technology, I and II. Fleischwirtschaft, 58 (6). p. 957 – 1009 - 12, 1015 - 21; 58 (7). p. 1143-6, 1149-52.

Sánchez, E. (2006). Studies of ovalbumin gelation in the presence of carrageenans and after manothermosonication treatments. Innovative Food Science and Emerging Technologies. (7). p. 270–274.

Sin-Lim, K; Barigou, M. (2005) Ultrasound-assisted generation of foam Ind. Ind. Eng. Chem. Res. (44). p. 3312 – 3320.

Tan, A.T; Woodworth, R.C. (1969). Ultraviolet difference spectral studies of conalbumin complexes with transition metal ions. Biochemistry, 8. (9). p. 3711-3716.

Tornberg, E. (1980).Functional characteristics of protein stabilized emulsions: emulsifying behavior of proteins in a sonifi er. J. Food Sci. (45).p. 1662-1668.

Van-Vliet, T. (1995). Mechanical properties of concentrated food gels. In E. Dickinson (Ed). Food macromolecules and colloides (special Pub, No (82), p. 447 – 455).

Cambridge, UK, Royal Society of Chemestry. Villamiel, M; Jong, P. (2000). Infl uence of high-intensity ultrasound and heat treatment in continuous flow on fat, proteins and native enzymes of milk. J. Agric. Food Chem. (48). p. 472 – 478.

Vizhanyo, T., Felföldi, J., 2000. Enhancing colour differences in images of diseased 460 mushrooms. Comp Elec Agric (26). p. 187–198.

Yang, S.C; Baldwin, R.E. (1995). Functional properties of eggs in foods. In: Stadelman, W. J. and Cotterill, O. J. (Eds.), Egg Science and Technology. p. 405 – 463.

Food Products Press, New York. Zhu, H; Damodaran, S. (1994). Heat-induced conformational changes in whey protein isolate and its relation to foaming properties. J. Agric. Food Chem. (42). p. 849 - 848.




DOI: https://doi.org/10.24054/16927125.v2.n2.2011.480

Enlaces refback

  • No hay ningún enlace refback.