Obtención de películas de ZnO impurificadas con Mn mediante la combinación de las técnicas Baño Químico y SILAR

Francy Nelly Jiménez García, Hugo Hernán Ortiz Álvarez, Luis Alberto Toro Carvajal

Resumen


En este trabajo se presentan los resultados obtenidos al impurificar películas de ZnO con Mn al emplear un procedimiento combinando las técnicas SILAR y Baño Químico. Las películas se crecieron sobre sustratos de vidrio usando como precursores: cloruro de zinc (ZnCl2), cloruro de manganeso (MnCl2) y sulfato de manganeso (MnSO4), y como agentes complejantes: hidróxido de amonio (NH4OH) y trietanolamina (TEA). Se varió el tiempo que permanecen las películas en la solución de manganeso y la temperatura de la solución para estudiar su influencia en las propiedades de las películas. La caracterización se realizó mediante Difracción de Rayos X (DRX) para estudiar la cristalinidad y el tipo de fases presentes, Espectrofotometría UV-Visible (UV-Vis) para determinar la energía de la brecha prohibida, y Microscopia Raman (μ-Raman) para analizar los modos normales de vibración e identificar que compuestos se están formando en las películas. Se encontró que es preferible emplear TEA como agente complejante ya que hay menos precipitación de hidróxidos de manganeso en la estructura, y que es mejor la calidad cristalina de las películas cuando se emplea como solución precursora MnSO4 que con MnCl2. Además, se evidenció una disminución de la calidad cristalina de las muestras a medida que disminuye la temperatura de la solución de manganeso. Para lograr una incorporación sustitucional de Mn en la estructura del ZnO fue preferible emplear una temperatura de 70º C y un tiempo de inmersión en la solución de 2 h.
Palabras clave: ZnO, Manganeso, Silar, Baño Químico, Microscopía Raman

Texto completo:

PDF

Referencias


Keis K, Magnusson E, Lindstrom H, Lindquist S, Hagfeldt A. 2002. A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes. Sol. Energy, 73: 51-58.

Liang S, Sheng H, Liu Y, Hio Z, Lu Y, Shen H. 2001. ZnO Schottky ultraviolet photodetectors. J. Cryst. Growth, 225: 110-119.

Saito N, Haneda H, Sekiguchi T, Ohashi N, Sakaguchi I, Koumoto K. 2002. Low‐Temperature Fabrication of Light‐Emitting Zinc Oxide Micropatterns Using Self‐Assembled Monolayers. Adv. Mater., 14: 418-425.

Pizzini N, Butta D, Narducci M, Palladino J. 1989. Thick film ZnO Resistive Gas Sensors. Electrochem. Soc.,136: 1945-1948.

Srivastava R, Yadav BC, Dwivedi CD, Kumar R. 2007. Comparative study of moisture sensing properties of ZnO nanomaterials through hydroxide route by mixing dropwise and sudden, Sens. Trans. J., 80: 1295–1301.

Gorrie CW, Sigdel AK, Berry JJ, Reese BJ, Van Hest MF, Holloway PH, Ginley DS, Perkins JD. 2010. Effect of deposition distance and temperature on electrical, optical and structural properties of radio-frequency magnetron-sputtered gallium-doped zinc oxide. Thin Solid Films, 519: 190-196.

Matsunami N, Fukushima J, Sataka M, Okayasu S, Sugai S, Kakiuchida H. 2010. Electrical property modifications of In-doped ZnO films by ion irradiation. Nucl. Instrum. Methods B, 268: 3071 - 3075.

Xin M, Zhong L, Liu D, Yu N. 2014. Effect of Mn doping on the optical, structural and photoluminescence properties of nanostructured ZnO thin film synthesized by sol e gel technique. Superlattices Microstruct., 74: 234 - 241.

Mimouni R, Kamoun O, Yumak A, Mhamdi A, Boubaker K, Petkova P, Amlouk M. 2015. Effect of Mn content on structural, optical, opto-thermal and electrical properties of ZnO: Mn sprayed thin films compounds, J. Alloys Compd., 645, 100 - 111.

Matsunami M, Itoh M, Kato S, Okayasu M, Sataka H, Kakiuchid. 2015. Growth of Mn-doped ZnO thin films by rf-sputter deposition and lattice relaxation by energetic ion impact. Appl. Surf. Sci., 350: 31 - 37.

Norton DP, Pearton SJ, Hebard AF, Theodoropoulou N, Boatner LA, Wilson RG. 2003. Ferromagnetism in Mn-implanted ZnO: Sn single crystals, Appl.Phys. Lett. 82: 239 - 245.

Wu X, Xu Z, Yu Z, Zhang T, Zhao F,Sun T, Ma Z, Li Z, Wang S. 2015. Resistive switching behavior of photochemical activation solution-processed thin films at low temperatures for flexible memristor applications,J.. Phys. D. Appl. Phys. 48:115101 - 115109.

Wei X, Yingxue Z, Xinyi Z, Dongliang C, Yaning X, Tao L, Wensheng Y, Shiqiang W. 2007. Local structures of Mn in dilute magnetic semiconductor ZnMnO. Solid State Communication, 141: 374-377.

Gleize J, Chikoidze E, Dumont Y, Rzepka E, Gorochov V. 2007. Resonant Raman scattering in Mn:ZnO dilute magnetic semiconductors. Superlattices and Microstructures, 42: 242 - 245.

Sejoon L, Seung-Woong L, Yoon S, Deuk Young K. 2007. Formation and characterization of room temperature ferromagnetic As-doped p-type (Zn0.93Mn0.07)O layer. Materials Science and Engineering B, 137: 40 - 44.

Jing W, Wen C, Minrui W. 2008. Properties analysis of Mn-doped ZnO piezoelectric films. Journal of Alloys and Compounds, 449: 44 - 47.

Gao XD, Li XM, Yu WD, 2004. Synthesis and optical properties of ZnO nanocluster porous films deposited by modified SILAR method. Applied Surface Science, 229: 275 - 281.

Vargas-Hernández C, Jiménez-García F N, Jurado J F. 2008. XRD, μ-Raman and optical absorption investigations of ZnO deposited by SILAR method. Microelectronics Journal. Microelectronics Journal, 39: 1347–1348.

Jiménez-García F.N, Londoño CL, Espinosa DG, Del Real A, Rodríguez ME. 2014. Influence of substrate on structural, morphological and optical properties of ZnO films grown by SILAR method. Bull. Mater. Sci. 37: 1283-1291.

Jiménez-García FN. 2010. Crecimiento por baño químico y caracterización de películas semiconductoras semimagnéticas de ZnMnO con potenciales aplicaciones en la implementación de sensores de humedad. Universidad Nacional de Colombia Sede Manizales. Tesis doctoral.

Ramírez SE, García-Cerda LA, González L A. 2016. Influence of triethanolamine in the deposition of Mn-doped ZnO thin films by the successive ionic layer adsorption and

reaction process. Superlattices and Microstructures, 100: 409 - 417.

Jiménez-García F.N, Espinosa DG, Vargas-Hernández C, Del Real A, Rodríguez ME. 2011. Characterization of nanostructures of ZnO and ZnMnO films deposited by successive

ionic layer adsorption and reaction method. Thin Sol. Film. Thin Solid Films, 519: 7638–7643.

Vargas-Hernández C, Jiménez-García FN, Henao V. 2007. Scientia et Technica, 37: 573 - 575.

López MO, García AA, Albor ML, Sánchez VM. 2003. Improved efficiency of the chemical bath deposition method during growth of ZnO thin film. Mater. Res. Bull. 38: 1241-1248.

Rueda J, Hernández A. (2015). Growth of single-cristalline strontium titanate fibers using LHPG. BISTUA Revista de la Facultad de Ciencias Básicas 13: 24-28. https://doi.org/10.24054/01204211.v2.n2.2015.1796.

Ochica AF, Muñoz Prieto E, Vera Graziano R, Gomez Pachon EY, Cerda AM, Rivera Torres F (2017) Obtention of cellulose Acetate Nanofibers From Sugar Cane Bagasse. Ciencia en Desarrollo.8(2):69-77.

Murcia J.J, Guarin J.R, Cely Macias A.C, Rojas H, Cubillos J.A, Hidalgo M.C, Navio JA (2017) Methylene blue degradation over M-TiO2 photocatalysts (M=Au or Pt). Ciencia en Desarrollo.8(1): 109-117.




DOI: https://doi.org/10.24054/01204211.v1.n1.2019.3140

Enlaces refback

  • No hay ningún enlace refback.