ACTIVIDAD GENOTÃXICA DE AGUAS ANTES Y DESPUES DE CLORAR EN LA PLANTA DE POTABILIZACIÃN EMPOPAMPLONA

Ivan Melendez Gelvez, Alfonso Quijano Parra, Enrique Pardo Perez

Resumen


Resumen:

La salud humana está estrechamente ligada a la calidad del agua que se consume, sin embargo cada día son liberados contaminantes que ponen en riesgo su calidad. Las aguas de consumo pueden contaminarse con  pesticidas, desechos industriales,  aguas negras y subproductos de la cloración, dichos compuestos  pueden inducir tumores e incluso la muerte, cuando la exposición es a largo plazo y  dosis bajas. La planta de purificación de agua del municipio de Pamplona (EMPOPAMPLONA) se abastece de 4 efluentes que atraviesan zonas agrícolas, por lo tanto las aguas pueden recibir pesticidas, ya que en estas zonas, ellos son utilizados indiscriminadamente.

También pueden contaminarse con  desechos domiciliarios debido a que las fuentes  abastecedoras pasan por caseríos. Además, las aguas también pueden recibir  subproductos del proceso de cloración, los cuales se ha demostrado son  fuertes mutágenos.

El estudio contempló la determinación de la  genotoxicidad en aguas de tres sitios diferentes: Zona 1, agua antes de ingresar a la planta de tratamiento; zona 2, agua después de haber sido tratada y zona 3, agua después de haber sido clorada. Cada ensayo se realizó por triplicado. Se utilizó la prueba de ANOVA a una vía para determinar el nivel de significancia entre el tratamiento y control. Los resultados mostraron un incremento significativo  de la genotoxicidad en los tres sitios analizados (p<0.01), lo que nos evidencia la presencia de compuestos genotóxicos, los cuales pueden constituir un riesgo para la población expuesta, dado que se sabe de la estrecha relación que existe entre la exposición a mutágenos y la aparición enfermedades como el cáncer.


Texto completo:

PDF

Referencias


Meléndez I, Zuleta M., marín i., Calle J., Salazar D. (2001). Efecto mutagénico de aguas de consumo Tratadas en la Planta Villa Hermosa.. Iatreia. , v.14, n.Nº 3, p.167 â 175.

Kummerer Klaus (2009). The presence of pharmaceuticals in the environmental due to human use-presentent knowledgeand future challenges. Journal Environ Management. 1-13.

Collotta M, Bertazzi PA,Bollati V. (2013). Epigenetics and pesticides. Toxicology, pp 1-7.

Mostafalou S, Abdollahi M. (2013). Pesticides and human chronic diseases: Evidences, mechanisms, and perspectives. Toxicology and Applied Pharmacology, 268(2), pp 157-177.

United States Environmental Protection Agency (USEPA) (2004). Office of Pesticide Programs, H. E. D., Science Information Management Branch. Chemicals evaluated for carcinogenic potential.

IARC . International Agency for Research on Cancer (1991). Working Group. Occupational exposures in spraying and application of insecticides. IARC Monogr Eval Carcinog Risk Chem Hum , 53,pp 45 â 92.

Morelli M. (2000). Industry viewpoint on thresholds genotoxic carcinogenic. Toxicol Pathol 28(3): 396-404.

Cabello G., Valenzuela M., Vilaxa A., Durán V., Rudolph I., Hrepic N., and Calaf C. (2001). A rat mammary tumor model induced by organophosphorous pesticides paration and malation, possibly through acetylcholineterase inhibition. Environ. Health Perspectives 109(5):471-479.

Recio-Vega R, Velazco-Rodriguez V, Ocampo-Gómez G, Hernandez-Gonzalez S, Ruiz-Flores P, Lopez-Marquez F. (2011). Serum levels of polychlorinated biphenyls in Mexican women and breast cancer risk. Journal of Applied Toxicology, 31(3) pp 270-278.

Schug TT, Janesick A, Blumberg B, Heindel JJ. (2011). Endocrine disrupting chemicals and disease susceptibility The Journal of Steroid Biochemistry and Molecular Biology, 127(3â5), ,pp 204215.

Kisby GE, Muniz JF, Scherer J, Lasarev MR, Koshy M, Kow YW, McCauley L. (2009). Oxidative Stress and DNA Damage in Agricultural Workers. Journal of Agromedicine, 14(2), pp 206-214.

McDonald, T.A., Komulainen, H., 2005. Carcinogenicity of the chlorination disinfection by-product MX. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 23, 163â214.

IARC, International Agency for Research on Cancer, Monographs, Supplement (2012). Available from: â©http://monographs.iarc.fr/ENG/Classification/index.phpâª.

Díaz Moroles N. E., Alfaro Barbosa J. M., Garza Ulloa H. (2001). Método analítico para detectar hidrocarburos aromáticos policíclicos en agua potable. Ciencia UANL, Vol. IV, núm., 4, octubre diciembre, pp. 420-425. Monterrey,México.

Hrudey, S.E., Charrois, J.W.A. (2012). Disinfection By-products and Human Health. IWA Publishing, London.

Wei, J., Ye, B., Wang, W., Yang, L., Tao, J., Hang, Z. (2010). Spatial and temporal evaluations of disinfection by-products in drinking water distribution systems in Beijing, China. Sci. Total Environ. 408, 4600.

Jurado, B., Ballesteros, E., Gallego, M. (2012). Occurrence of aromatic amines and N-nitrosamines in the different steps of a drinking water treatment plant. Water Res. 46, 4543â4555.

Papageorgiou, A., Voutsa, D., Papadakis, N. (2014). Occurrence and fate of ozonation by-products at a full-scale drinking water treatment plant. Sci. Total Environ. 481, 392-400.

Jurado, B., Ballesteros, E., Gallego, M., 2014. Occurrence of carboxylic acids in different steps of two drinking-water treatment plants using different disinfectants. Water Res. 51, 186â197.

Bove Jr., G.E., Rogerson, P.A., Vena, J.E (2007). Case-control study of the effects of trihalomethanes on urinary bladder cáncer risk. Archives of Environmental and Occupational Health 62 (1), 39e47.

Goebell, P.J., Villanueva, C.M., Rettenmeier, A.W., Rubben, H., Kogevinas, M. (2004). Environmental exposure, chlorinated drinking water, and bladder cancer. World Journal of Urology 21 (6), 424e432.

Villanueva, C.M., Cantor, K.P., Cordier, S., Jaakkola, J.J., King, W.D.,Lynch, C.F., Porru, S., Kogevinas, M. (2004). Disinfection byproducts and bladder cancer: a pooled analysis. Epidemiology 15 (3), 357e367.

Richardson SD, Plewa MJ., Wagner E.D., Schoeny R., DeMarini D.M. (2007). Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research,Mutat. Res. 636:178â242.

IARC, International Agency for Research on Cancer. (2004). Monographs on the Evaluation of Carcinogenic Risks to Humans Some Drinking-water Disinfectants and Contaminants, including Arsenic. Volume 84.

Xu.,Xu.,Zou Huixian and Zhang J. (1997). Formation of strong mutagen 3-cloro â 4-(diclorometil) â5-hidroxí (5H) â furanon (MX). By chlorination of fractions of lake water. Water Res. Vol.31 No 5:1021-1026.

Singh, NP, M M Coy, R Tice, and E Edward (1988). A simple technique for quantitation of low levels of DNA damage in individual cells, Exp. Cell Res.175: 184191.

Pandrangi R., Petras M., Ralph S., Vrzoc M. (1995). Alkaline single cell gel (commet) assay and genotoxicity monitoring using bullheads and carp. Environ Mol Mutagen. 26:345-356.

Lander BF, Knudsen LE, Gamborg MO, Jarventaus H, Norppa H. (2000). Chromosome aberrations in pesticideexposed greenhouse workers. [Comparative Study Research Support, Non-U S Gov't]. Scand J Work Environ Health, 26(5), pp 436-442.

Zeljezic D,Garaj-Vrhovac V. (2002). Sister chromatid exchange and proliferative rate index in the longitudinal risk assessment of occupational exposure to pesticides. Chemosphere, 46(2), pp 295303.

Grover P, Danadevi K, Mahboob M, Rozati R, Banu, BS, Rahman MF. (2003). Evaluation of genetic damage in workers employed in pesticide production utilizing the Comet assay. Mutagenesis, 18(2), pp 201-205.

Lee WJ, Blair A, Hoppin JA, Lubin JH, Rusiecki JA, Sandler DP, Alavanja MC. (2004). Cancer incidence among pesticide applicators exposed to chlorpyrifos in the Agricultural Health Study. J Natl Cancer Inst, 96(23), pp 1781-1789.

Giri S, Giri A, Sharma GD,Prasad SB. (2002). Mutagenic effects of carbosulfan, a carbamate pesticide. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 519(1â2), pp 75-82.

Bhalli JA, Khan QM, Nasim A. (2006). DNA damage in Pakistani pesticide manufacturing workers assayed using the Comet assay. Environmental and Molecular Mutagenesis, 47(8), pp 587593.

Benedetti D, Nunes E, Sarmento M, Porto C, Santos CEI, Dias JF, da Silva J. (2013). Genetic damage in soybean workers exposed to pesticides: Evaluation with the comet and buccal micronucleus cytome assays. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 752(1â2), pp 28-33.

Collins AR, Oscoz AA, Brunborg G, Gaivão I, Giovannelli L, Kruszewski M, Å tÄtina R. (2008). The comet assay: topical issues. Mutagenesis, 23(3), pp 143-151.

Bull S, Fletcher K, Boobis AR, Battershill JM. (2006). Evidence for genotoxicity of pesticides in pesticide applicators: a review. Mutagenesis, 21(2), pp 93-103.

Wauer, G., Heckemann, H., Koschel, R. (2004). Analysis of toxic aluminium species in natural waters. Microchim. Acta 146, 149â154. (2004).

DeVoto, E., Yokel, A.R. (1994). The biological speciation and toxicokinetics of Al. Environ. Health Perspect. 102, 940â951.

MihaljeviÄ, Z., Ternjej, I., Stankovic, I., Kerovec, M., Kopjar, N. (2009). Application of the comet assay and detection of DNA damage in haemocytes of medicinal leech affected by aluminium pollution: a case study. Environ. Poll. 157, 1565â1572.

Michailova, P., Ilkova, J., White, K.N. (2003). Functional and structural rearrangements of salivary gland polytene chromosomes of Chironomus riparius Mg. (Diptera, Chironomidae) in response to freshly neutralized.

Ternjej, I., MihaljeviÄ, Z., StankoviÄ, I., Kerovec, M., Sipos, L., ZÄlježiÄ, D., Kopjar, N. (2010). Estimation of DNA integrity in blood cells of eastern mosquitofish (Gambusia holbrooki) inhabiting an aluminium-polluted water environment: an alkaline comet assay study. Arch. Environ. Contam. Toxicol. doi:10.1007/s00244-010-9469-6.

Roy. A.K., Talukder. G., Sharma. A. (1990). Effects of aluminium sulphate on human leukocyte chromosomes in vitro, Mutat. Res. 244 (2) 179â183.

KovaÄeviÄ, G., GregoroviÄ, G., KalafatiÄ, M., JaklinoviÄ, I. (2009). The effect of aluminium on the planarian Polycelis felina (daly). Water Air Soil Pollut. 196, 333â344.

Ternjej, I., MihaljeviÄ, Z., StankoviÄ, I., Kerovec, M., Sipos, L., ZÄlježiÄ, D., Kopjar, N. (2010). Estimation of DNA integrity in blood cells of eastern mosquitofish (Gambusia holbrooki) inhabiting an aluminium-polluted water environment: an alkaline comet assay study. Arch. Environ. Contam. Toxicol. doi:10.1007/s00244-010-9469-6.

Roy. A.K., Talukder. G., Sharma. A. (1990). Effects of aluminium sulphate on human leukocyte chromosomes in vitro, Mutat. Res. 244 (2) 179â183.

Banasik.A., Lankoff .A., Piskulak. A., Adamowska. K., Lisowska. H., Wojcik. A. (2005). Aluminum-induced micronuclei and apoptosis in human peripheralblood lymphocytes treated during different phases of the cell cycle, Environ. Toxicol. 20 (4) 402â406.

Lima. P.D., Leite. D.S.,. Vasconcellos. M.C., Cavalcanti. B.C., Santos. R.A., Costa. L.V. Lotufo, C. Pessoa, M.O. Moraes, R.R. Burbano. (2007). Genotoxic effects of aluminum chloride in cultured human lymphocytes treated in different phases of cell cycle, Food Chem. Toxicol. 45 (7) 1154â1159.

Schiliro T., Pignata C., Rovere R., Fea E., Gill G. (2009). The endocrine disrupting activity of surface wáter and wastewaterntreatment plant, effluents in relation to chlorination. Chemosfere. 75:335-340.

Komaki, Y., Pals, J., Wagner, E.D., Marinas, B.J., Plewa, M.J. (2009). Mammalian cell DNA damage and repair kinetics of monohaloacetic acid drinking water disinfection by-products. Environmental Science and Technology 43 (21), 8437e8442.

Escobar LF., Hoyos LE., Londoño E., Reyes I., Saavedra D., Carvajal S., Sánchez A., Wagner ED and Plewa M. (2013). Genotoxic and clastogenic effects of monohaloacetic acid drinking water disinfection by-products in primary human lymphocytes. water research 47: 32 8-3290.

Ali A., Kurzawa-Zegota M., Najafzadeha M, Gopalana RC., Plewa MJ., Anderson D. (2014). Effect of drinking water disinfection by-products in human peripheralblood lymphocytes and sperm. Mutation Research 770: 136â143.




DOI: https://doi.org/10.24054/01204211.v2.n2.2015.1795

Enlaces refback

  • No hay ningún enlace refback.