COLONIZATION of Rubus glaucus BENTH BY AZORHIZOBIUM CAULINODANS ORS571 USIG A FLAVONOIDE NARINGENINA

Giovani Orlando Cancino Escalante, S E Cancino, Enrique Quevedo Garcia

Resumen


Root systems of two Andean blackberry materials (thorn and thornless) of Rubus glaucus Benth cultured in vitro in the presence of five treatments (four flavonoids and one control) were inoculated with Azorhizobium caulinodans ORS571 (pXLGD4)  (a strain carrying the lacZ reporter gene which facilitated the detection of bacterial colonization). Evaluation of colonization effectiveness for each treatment was done by means of application of experimental design measuring frequency and intensity parameters. Statistical analysis showed differences at comparing flavonoids vs. control and the overall higher effectiveness of the flavonoid naringenin. Observation of colonization was made by light and electron microscope confirming internal colonization of Andean blackberry roots by A. caulinodans. This is the first work demonstrating root colonization of R.glaucus by azorhizobia and therefore settling the basis for future investigations and scientific applications related to interaction with plant growth-promoting bacteria under the effect of flavonoids, along with possible implications of common benefit for non-legume crops in the northwest region of Colombia. 

 

Key Words: Azorhizobium caulinodans ORS571, Andean blackberry, flavonoids, LacZ, lateral roots, naringenin.

 


Texto completo:

PDF

Referencias


-FAO, 2011. Current world fertilizer trends and outlook to 2015. ftp://ftp.fao.org/ag/agp/docs/cwfto15.pdf.

-Lodwig E. and Poole P. 2003. Metabolism of Rhizobium bacteroids. Critical Reviews in Plant Science 22(1):37-78.

-Kitts C. & Ludwig R 1994. Azorhizobium caulinodans respires with at least 4 terminal oxidases. Journal of Bacteriology. 176:886-895.

-Agronet, 2015. Red de Información y Comunicación Estratégica del Sector Agropecuario Colombia..http://www.agronet.gov.co/agronetweb1/Peque%C3%B1osproductores.aspx.

-Clark, J., y Finn, Ch. (2011). Blackberry Breeding and Genetics.http://www.globalsciencebooks.info/JournalsSup/images/Sample/FVCSB_5%28SI1%2 927- 43o.pdf.

-Franco, G., Giraldo, M. 2002. El cultivo de la mora. Quinta Edición corregida. Manual de asistencia Técnica. CORPOICA, Federación Nacional de Cafeteros de Colombia, SENA, Comité Técnico Agropecuario de Risaralda, UMATA, Risaralda. 81 p.

-Castro, D., Díaz, J., Montoya, J., & Ríos, D. (2006). Micropropaga¬ción de especies de interés hortícola y forestal en bioreactores de inmersion temporal . Revista Universidad Católica De Orien¬te, 1, 63 -71.

-Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497.

-Gopalaswamy G., Kannaiyan S, O’Callaghan, K., Davey, M. And Cocking, E. 2000. The xylem of Rice (Oryza sativa) is colonized by Azorhizobium caulinodans. Proc. R. Soc. Lond. 267:103-107.

-O’Callaghan K. J., Stone P., Xiaojia H., Griffiths D., Davey M.R. and Cocking E.C. 2000. Effects of Glucosinolates and Flavonoids on Colonization of the Roots of Brassica napus by Azorhizobium caulinodans ORS571. Appl. Environ. Microbiol. 66(5):2185-2191.

-Ladha J., García M., Miyan S., Padre A. and Watanabe I. 1989. Survival of Azorhizobium caulinodans in the soils of rhizosphere of wetland rice under Sesbania rostrata-rice rotation. Appl. Environ. Microbiol. 55:454-460.

-Boivin C., Ndoye I., Lortet G., Ndiaye A., De Lajudie P. and Dreifus B. 1997. The Sesbania root symbionts Synorhizobium saheli and S. teranga bv. sesbaniae can form stem nodules on Sesbania rostrata, although they are less adapted to stem nodulation than Azorhizobium caulinodans. Appl. Environ. Microbiol. 63(3):1040-1047.

-Vasse J., Frey P.& Trigalet A. 1995. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Molecular Plant-Microbe Interactions 8:241-251.

-Trouvelot A., Kough J.L. et Gianinazzi-Pearson V. 1986. Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: Physiological and Genetical Aspects of Mycorrhizae, V. Gianinazzi-Pearson and S. Gianinazzi (eds.). INRA Press, Paris, pp. 217-221

-Davey M., Webster G., Manders G., Ringrose F., Power J. and Cocking E. 1993. Effective nodulation of micro-propagated shoots of the non-legume Parasponia andersonii by Bradyrhizobium. J. Exp. Bot. 44:863-867.

-Joy D., Pawley J.,B. 1992. High-resolution scanning electron microscopy. Utramicros. 47: 80-100.

-Cancino G. O. 2001. Tissue culture and Agrobacterium mediated transformation studies in Passiflora. Tesis Doctoral. University of Nottingham. U.K. 120 p.

-Cancino GO,Gill MIS, Anthony P, Davey MR, Lowe KC ,Power JB (2004) Naringenin enhanced efficiency of GUS activity in Passiflora mollissima (H.B.K.) Bailey. Universitas Scientarium Vol. 9 (1): 47-57.

-Nakajimaa, A, Aonoa T,Tsukadaa S, Siarota L, Ogawab T and Oyaizua H.2012 Lon Protease of Azorhizobium caulinodans ORS571 Is Required for Suppression of reb Gene Expression Appl. Environ. Microbiol. September 1, 2012 78:6251-6261

-O’Callaghan K. J., Dixon R. and Cocking E. 2001. Arabidopsis thaliana: a model for studies of colonization by non-pathogenic and plant-growth-promoting rhizobacteria. Aust. J. Plant Physiol. 28:975–982.

-Webster G., Jain V., Davey M., Gough C. Vasse J., Dénarié J. and Cocking E. 1998. The flavonoid naringenin stimulates the intercellular colonization of wheat roots by Azorhizobium caulinodans. Plant Cell Environ. 21:373-383.

-O’Callaghan K. J., Dixon R. and Cocking E. 2001. Arabidopsis thaliana: a model for studies of colonization by non-pathogenic and plant-growth-promoting rhizobacteria. Aust. J. Plant Physiol. 28:975–982.

-Gough C., Galera C., Vasse J., Webster E., Cocking E. and Dénarié J. 1997. Specific flavonoids promote intercellular root colonization of Arabidopsis thaliana by Azorhizobium caulinodans ORS571. Mol. Plant-Microbe Interact. 10:560-570.

-Boivin C., Ndoye I., Lortet G., Ndiaye A., De Lajudie P. and Dreifus B. 1997. The Sesbania root symbionts Synorhizobium saheli and S. teranga bv. sesbaniae can form stem nodules on Sesbania rostrata, although they are less adapted to stem nodulation than Azorhizobium caulinodans. Appl. Environ. Microbiol. 63(3):1040-1047.

-Dreyfus B., García J.L. and Gillis M. 1988. Characterization of Azorhizobium caulinodans gen nov., a stem nodulating, nitrogen fixing bacterium isolated from Sesbania rostrata. Int. J. Systemat. Bacteriol. 38:89-98.

-De Hoff P. and Hirsch A.M. 2003. Nitrogen comes down to Earth: Report from the 5th European nitrogen fixation conference. Molec Plan Interac 16 (5): 371-375.

-Goormachtig S., Capoen W., James E.K., Holsters M. 2004. Switch from intracellular to intercellular invasion during water stress tolerant legume nodulation. Proc. Nat. Acad. Sci. USA. 101(16) 6303-6308.

-Stone P.J., O`Callaghan K.J., Davey M.R. and Cocking E.C. 2001. Azorhizobium caulinodans ORS571 colonizes xylem of Arabidopsis thaliana. Mol. Plant-Microbe Interact. 14:93-97.

-Lin CC, Chen YC, Song SC and Lin LP (1999) Flavonoids as inducers of extracellular proteins and exoplysaccharides of Sinorhizobium fredii. Biol Fert Soi 30:83-89.

-Glick B. and Pasternak J.J 2003. Molecular Biotechnology. Third Edition. American Society of Microbiology Press. Hernson VA 20172, USA.760p




DOI: https://doi.org/10.24054/01204211.v2.n2.2016.2117

Enlaces refback

  • No hay ningún enlace refback.