ESTUDIO DE UN CATALIZADOR ÁCIDO MAGNÉTICO EN LA OBTENCIÓN DE FURFURAL A PARTIR DE LA DESHIDRATACIÓN DE XILOSA

José Jobanny Martínez Zambrano, Efrén de Jesús Muñoz Prieto, Hugo Alfonso Rojas Sarmiento, Gustavo Pablo Romanelli

Resumen


Se  estudiaron sólidos sulfonados (Al2O3-SO3H)  y  sulfonados magnéticos (Fe3O4-Al2O3-SO3H)  en la reacción de deshidratación de xilosa a furfural. Los catalizadores se caracterizaron por distintas técnicas como fisisorción de N2 a 77K, espectroscopia infrarroja FTIR y curvas de magnetización. Estos solidos mostraron una relación lineal entre el área superficial y la capacidad ácida mostrando una mejor dispersión de los grupos -SO3H en el sólido que no presenta carácter  magnético. Sin embargo, la presencia de las partículas magnéticas Fe3O4 permite una fácil separación del medio de reacción al aplicar un campo magnético externo, con rendimientos a furfural del 67% con el catalizador  Al2O3-SO3H  y del 11% con Fe3O4-Al2O3-SO3H.

Palabras clave: furfural, xilosa, ácido, magnético, sulfónico


Texto completo:

PDF

Referencias


Yousuf A. Biodiesel from lignocellulosic biomass – Prospects and challenges. Waste Management. 2012;32(11):2061-7.

Long H, Li X, Wang H, Jia J. Biomass resources and their bioenergy potential estimation: A review. Renewable and Sustainable Energy Reviews. 2013;26(0):344-52.

Pérez ME, Ruiz DM, Schneider M, Autino JC, Romanelli G. La química verde como fuente de nuevos compuestos para el control de plagas agrícolas. (Green Chemistry as a Source of Novel Compounds for Agricultural Pest Control.). 2014. 2014;4(2):83-91.

Muñoz Prieto E, Palacios Alquisira J, Rius Alonso C. Microwave and ultrasound activation effect on cationization of corn and potato starches. 2013;4(1):151-74.

García-Sancho C, Rubio-Caballero JM, Mérida-Robles JM, Moreno-Tost R, Santamaría-González J, Maireles-Torres P. Mesoporous Nb2O5 as solid acid catalyst for dehydration of d-xylose into furfural. Catalysis Today. 2014;234(0):119-24.

Dias AS, Pillinger M, Valente AA. Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts. Journal of Catalysis. 2005;229(2):414-23.

Nandan D, Sreenivasulu P, Sivakumar Konathala LN, Kumar M, Viswanadham N. Acid functionalized carbon–silica composite and its application for solketal production. Microporous and Mesoporous Materials. 2013;179(0):182-90.

García-Sancho C, Agirrezabal-Telleria I, Güemez MB, Maireles-Torres P. Dehydration of d-xylose to furfural using different supported niobia catalysts. Applied Catalysis B: Environmental. 2014;152–153(0):1-10.

Agirrezabal-Telleria I, Requies J, Güemez MB, Arias PL. Pore size tuning of functionalized SBA-15 catalysts for the selective production of furfural from xylose. Applied Catalysis B: Environmental. 2012;115–116(0):169-78.

Dias AS, Lima S, Carriazo D, Rives V, Pillinger M, Valente AA. Exfoliated titanate, niobate and titanoniobate nanosheets as solid acid catalysts for the liquid-phase dehydration of d-xylose into furfural. Journal of Catalysis. 2006;244(2):230-7.

Dias AS, Pillinger M, Valente AA. Liquid phase dehydration of d-xylose in the presence of Keggin-type heteropolyacids. Applied Catalysis A: General. 2005;285(1–2):126-31.

Lima S, Antunes MM, Fernandes A, Pillinger M, Ribeiro MF, Valente AA. Catalytic cyclodehydration of xylose to furfural in the presence of zeolite H-Beta and a micro/mesoporous Beta/TUD-1 composite material. Applied Catalysis A: General. 2010;388(1–2):141-8.

Agirrezabal-Telleria I, Requies J, Güemez MB, Arias PL. Dehydration of d-xylose to furfural using selective and hydrothermally stable arenesulfonic SBA-15 catalysts. Applied Catalysis B: Environmental. 2014;145(0):34-42.

Lai D-m, Deng L, Li J, Liao B, Guo Q-x, Fu Y. Hydrolysis of Cellulose into Glucose by Magnetic Solid Acid. ChemSusChem. 2011;4(1):55-8.

Lin C-C, Ho J-M, Wu M-S. Continuous preparation of Fe3O4 nanoparticles using a rotating packed bed: Dependence of size and magnetic property on temperature. Powder Technology. 2015;274(0):441-5.

Safari J, Zarnegar Z. A magnetic nanoparticle-supported sulfuric acid as a highly efficient and reusable catalyst for rapid synthesis of amidoalkyl naphthols. Journal of Molecular Catalysis A: Chemical. 2013;379(0):269-76.

Li H, Qin L, Feng Y, Hu L, Zhou C. Preparation and characterization of highly water-soluble magnetic Fe3O4 nanoparticles via surface double-layered self-assembly method of sodium alpha-olefin sulfonate. Journal of Magnetism and Magnetic Materials. 2015;384(0):213-8.

Karaca E, Şatır M, Kazan S, Açıkgöz M, Öztürk E, Gürdağ G, et al. Synthesis, characterization and magnetic properties of Fe3O4 doped chitosan polymer. Journal of Magnetism and Magnetic Materials. 2015;373(0):53-9.

Banazadeh A, Pirisedigh A, Aryanasab F, Salimi H, Shafiei-Haghighi S. Novel synthesis and characterization of Fe3O4@silica–palladium nanocatalyst: A highly active and reusable heterogeneous catalyst for Heck cross-coupling reactions. Inorganica Chimica Acta. 2015;429(0):132-7.

Schätz A, Reiser O, Stark WJ. Nanoparticles as Semi-Heterogeneous Catalyst Supports. Chemistry – A European Journal. 2010;16(30):8950-67.

Chen J, Wang F, Huang K, Liu Y, Liu S. Preparation of Fe3O4 nanoparticles with adjustable morphology. Journal of Alloys and Compounds. 2009;475(1–2):898-902.

Aphesteguy JC, Jacobo SE, Schegoleva NN, Kurlyandskaya GV. Characterization of nanosized spinel

ferrite powders synthesized by coprecipitation and autocombustion method. Journal of Alloys and Compounds. 2010;495(2):509-12.

Huber DL. Synthesis, Properties, and Applications of Iron Nanoparticles. Small. 2005;1(5):482-501.

Martínez JJ, Rojas H, Vargas L, Parra C, Brijaldo MH, Passos FB. Hydrogenation of m-dinitrobenzene over Au catalysts on magnetic supports. Journal of Molecular Catalysis A: Chemical. 2014;383–384(0):31-7.

Okoli C, Sanchez-Dominguez M, Boutonnet M, Järås S, Civera C, Solans C, et al. Comparison and Functionalization Study of Microemulsion-Prepared Magnetic Iron Oxide Nanoparticles. Langmuir. 2012;28(22):8479-85.

Maggi R, Piscopo CG, Sartori G, Storaro L, Moretti E. Supported sulfonic acids: Metal-free catalysts for the oxidation of hydroquinones to benzoquinones with hydrogen peroxide. Applied Catalysis A: General. 2012;411–412:146-52.

Kang YS, Risbud S, Rabolt JF, Stroeve P. Synthesis and Characterization of Nanometer-Size Fe3O4 and γ-Fe2O3 Particles. Chemistry of Materials. 1996;8(9):2209-11.

Peng H-P, Liang R-P, Qiu J-D. Facile synthesis of Fe3O4@Al2O3 core–shell nanoparticles and their application to the highly specific capture of heme proteins for direct electrochemistry. Biosensors and Bioelectronics. 2011;26(6):3005-11.

Wu Y, Zhang T, Zheng Z, Ding X, Peng Y. A facile approach to Fe3O4@Au nanoparticles with magnetic recyclable catalytic properties. Materials Research Bulletin. 2010;45(4):513-7.

Musić S, Krehula S, Popović S, Skoko Ž. Some factors influencing forced hydrolysis of FeCl3 solutions. Materials Letters. 2003;57(5–6):1096-102.

Wang S, Mulligan CN. Speciation and surface structure of inorganic arsenic in solid phases: A review. Environment International. 2008;34(6):867-79.

Testa ML, La Parola V, Liotta LF, Venezia AM. Screening of different solid acid catalysts for glycerol acetylation. Journal of Molecular Catalysis A: Chemical. 2013;367(0):69-76.

Nechifor A, Stoian M, Voicu S, Nechifor G. Modified Fe3O4 colloidal dispersed magnetic particles as carrier in liquid membranes. Optoelectronics and Advanced Materials–Rapid Communications. 2010;4(8):1118-23.

Wu L, Yin Z. Sulfonic acid functionalized nano γ-Al2O3 catalyzed per-O-acetylated of carbohydrates. Carbohydrate Research. 2013;365(0):14-9.

Kureshy RI, Ahmad I, Khan N-uH, Abdi SHR, Pathak K, Jasra RV. Chiral Mn(III) salen complexes covalently bonded on modified MCM-41 and SBA-15 as efficient catalysts for enantioselective epoxidation of nonfunctionalized alkenes. Journal of Catalysis. 2006;238(1):134-41.




DOI: https://doi.org/10.24054/01204211.v2.n2.2016.2187

Enlaces refback

  • No hay ningún enlace refback.