Sintesis de polvo de Titanio por reducción metalotermica

Bernd Friedrich, Rafael Bolivar León

Resumen


Se obtuvo polvo metálico de titanio (2,98% en peso O) de tamaños de partículas irregulares y semiesféricas entre 0,5 y 3,5 μm mediante reducción magnesiotérmica de TiO2 y un proceso de purificación por lixiviación. Se evaluó la influencia de la temperatura, tiempo, tamaño de partícula de TiO2, forma de magnesio, relación molar de Mg / TiO2. Se diseñaron y usaron tres reactores diferentes que debieron soportar alta temperatura y promover las reacciones sólido-líquido y sólido-gas. La mejor configuración resultó cuando se promovió la reacción del modelo de gas sólido.
Palabras clave: Producción de titanio, Metalotermia, Dioxido de titanio.

Texto completo:

PDF

Referencias


Bolívar, R., & Friedrich, B. (2009). Synthesis of titanium via magnesiothermic reduction of TiO2 (Pigment). Proceedings - European Metallurgical Conference, EMC 2009 (Vol. 4). https://doi.org/10.13140/RG.2.2.11374.61760.

Bolzoni, L., Ruiz-Navas, E. M., Neubauer, E., & Gordo, E. (2012). Inductive hot-pressing of titanium and titanium alloy powders. Materials Chemistry and Physics, 131(3), 672–679. https://doi.org/https://doi.org/10.1016/j.matchemphys.2011.10.034.

Borys, S; Anderson, R. P.; Benish, A.; Jacobsen, L.; Ernst, W.; Kogut, D.; Lyssenko, T. (2005). Development Status of the Armstrong Process for Production of Low Cost Titanium Powder. In Aeromat 2005. Orlando.

C. Oosterhof, Reitz. J, Bolivar. R, B. F. (2010). Potentiale alternativer Herstellungskonzepte für Titanmetall und Titanlegierungen. In 44. Metallurgische Seminar des Fachausschusses für Metallurgische (pp. 131–162).

Capus, J. (2017). Titanium powder developments for AM – A round-up. Metal Powder Report, 72(6), 384–388. https://doi.org/https://doi.org/10.1016/j.mprp.2017.11.001.

Cui, C., Hu, B., Zhao, L., & Liu, S. (2011). Titanium alloy production technology, market prospects and industry development. Materials & Design - MATER DESIGN (Vol. 32). https://doi.org/10.1016/j.matdes.2010.09.011.

Dutta, B., & Froes, F. (2015). The Additive Manufacturing (AM) of Titanium Alloys. Advanced Materials Research (Vol. 1019). https://doi.org/10.1016/B978-0-12-800054-0.00024-1.

Fray, D. J. (2001). Emerging molten salt technologies for metals production. JOM, 53(10), 27–31. https://doi.org/10.1007/s11837-001-0052-5.

Froes, F. H. S. (2012). Titanium Powder Metallurgy: A Review – Part 1. ADVANCED MATERIALS & PROCESSES, 16–22. Retrieved from.https://www.asminternational.org/documents/10192/1877324/amp17009p16.pdf/2df24a9d-754d-4801-8aa1-3759cf4e6b64.

German, R. (2009). Titanium powder injection moulding: A review of the current status of materials, processing, properties and applications. Powder Injection Moulding.

International (Vol. 3).

Gopienko, V. G., & Neikov, O. D. (2009). Chapter 14 - Production of Titanium and Titanium Alloy Powders. In Handbook of Non-Ferrous Metal Powders: Technologies and Applications (pp. 314–323). Oxford: Elsevier. https://doi.org/https://doi.org/10.1016/B978-1-85617-422-0.00014-8.

Hongan, L.; McGinn, E.; Kendall, R. (2008). Research and development in titanium implications for a titanium metal industry in Australia.

Hurless, B. E., & Froes, F. H. (2002). Lowering the cost of titanium. The AMPTIAC Quarterly (Vol. 6).

Mohandas, K. S., & Fray, D. (2004). FFC Cambridge process and removal of oxygen from metal-oxygen systems by molten salt electrolysis: An overview. Transactions of the Indian Institute of Metals (Vol. 57).

Norgate, T. E., & Wellwood, G. (2006). The potential applications for titanium metal powder and their life cycle impacts. JOM, 58(9), 58–63. https://doi.org/10.1007/s11837-006-0084-y.

Okabe, T. H., Oda, T., & Mitsuda, Y. (2004). Titanium powder production by preform reduction process (PRP). Journal of Alloys and Compounds, 364(1), 156–163. https://doi.org/https://doi.org/10.1016/S0925-8388(03)00610-8.

Prasad, S., Ehrensberger, M., Gibson, M. P., Kim, H., & Monaco, E. A. (2015, November 1). Biomaterial properties of titanium in dentistry. Journal of Oral Biosciences. Elsevier. https://doi.org/10.1016/j.job.2015.08.001.

Rueda J, Hernández A. (2015). Growth of single-cristalline strontium titanate fibers using LHPG. BISTUA Revista de la Facultad de Ciencias Básicas 13: 24-28. https://doi.org/10.24054/01204211.v2.n2.2015.1796.

Suzuki, R. O., & Inoue, S. (2003). Calciothermic reduction of titanium oxide in molten CaCl2. Metallurgical and Materials Transactions B, 34(3), 277–285. https://doi.org/10.1007/s11663-003-0073-2.

Suzuki, R. O., Ono, K., & Teranuma, K. (2003). Calciothermic reduction of titanium oxide and in-situ electrolysis in molten CaCl2. Metallurgical and Materials Transactions B, 34(3), 287–295. https://doi.org/10.1007/s11663-003-0074-1.

Vlad, A. I. O. (2008). Innovative powder metallurgy process for producing low cost titanium alloy component. In Titanium 2008. Las Vegas.

Whittaker, D., & Froes, F. H. (Sam). (2015). 30 - Future prospects for titanium powder metallurgy markets BT - Titanium Powder Metallurgy. In Titanium Powder Metallurgy (pp. 579–600). Boston: Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-12-800054-0.00030-7.

Workshop, M. I. M. T., & Pm, E. (2007). Developments in the powder injection moulding of titanium. Powder Metallurgy.

Yang, Y., Zhang, C., Dai, Y., & Luo, J. (2017). Tribological properties of titanium alloys under lubrication of SEE oil and aqueous solutions. Tribology International, 109, 40–47. https://doi.org/10.1016/j.triboint.2016.11.040.




DOI: https://doi.org/10.24054/01204211.v1.n1.2019.3149

Enlaces refback

  • No hay ningún enlace refback.