Estudio del pretratamiento hidrotermico para favorecer la actividad de las celulasas libres e inmovilizadas

Annie Y. Vargas, Laura Luque, José J Martinez

Resumen


Para mejorar la actividad enzimática de las celulasas es necesario disminuir las barreras estructurales de la celulosa con distintos pretratamientos, en este trabajo se realizó el estudio del pretratamiento hidrotérmico de celulosa comercial a distintos factores de severidad, con el fin de mejorar la conversión a azucares reductores y disminuir la cristalinidad. Además, se estudió la degradación enzimática de la celulosa pretratada hidrotermicamente con celulasas comerciales previamente inmovilizadas en SiO2-NH2. Los resultados indican una mayor degradación de la celulosa tratada frente a la celulosa no tratada, a pesar que la actividad enzimática disminuye cuando las enzimas se inmovilizan. Este proceso es un tratamiento amigable con el medio ambiente.
Palabras Clave: celulasas, pretratamiento hidrotérmico, factor de severidad


Texto completo:

PDF

Referencias


Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management, 52 (2), 858–875. 50

Chaparro, S. P., Lara, A. E., Sandoval, A., Sosa, S. J., Martínez, J. J., & Gil González, J. H. (2015). Functional Characterization of Mango Seeds Kernel (Mangifera indica L.). Ciencia En Desarrollo, 6(1), 67–75.

Dinjus, E., & Kruse, A. (2004). Hot compressed water—a suitable and sustainable solvent and reaction medium? Journal of Physics: Condensed Matter, 16, S1161–S1169.

Goshe.T.K. (1987). Measurement of cellulase activities. Applied Chemistry Division Commission on Biotechnology, 59 (5), 695–702.

Huang, F., & Ragauskas, A. J. (2012). Dilute H2SO4 and SO2 pretreatments of Loblolly pine wood residue for bioethanol production. Ind Biotechnol, 8 (1): 22-30.

Juturu, V., & Chuan, J. (2014). Microbial cellulases: Engineering, production and applications. Renewable and Sustainable Energy Reviews, 33, 188–203.

Li, H., Pu, Y., Kumar, R., Ragauskas, A. J., & Wyman, C. E. (2012). Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms. Sheraton, New Orleans: 34th Symposium on Biotechnology for Fuels and Chemicals.

Lowry, O., Rosebrough, J., Farr, L., & Randall, R. . (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193 (1), 265–275.

Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426–428.

Moreno, L. M., Muñoz Prieto, E., & Casanova, H. (2015). Flocculation with Chitosan of Microalgae Native of the Colombian Plateau Floculación con quitosano de las microalgas nativas de la altillanura Colombiana. Ciencia En Desarrollo, 6(1), 25–31.

Muñoz Prieto, E., Rivas, B., & Sánchez, J. (2013). Natural polymer grafted with synthetsic monomer by microwave for water treatment: A review. Ciencia En Desarrollo, 4, 219–240.

Nickerson, R. F., & Habrle, J. A. (1947). Cellulose intercrystalline structure: study by hydrolytic methods. Ind Eng Chem Res, 39 (11), 1507–1512.

Nitsos, C. K., Matis, K. A., & Triantafyllidis, K. S. (2013). Optimization of Hydrothermal Pretreatment of Lignocellulosic Biomass in the Bioethanol Production Process. ChemSusChem, 6 (1), 110–122.

Pu, Y., Hu, F., Huang, F., Davison, B. H., & Ragauskas, A. J. (2013). Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnology for Biofuels, 6 (1), 15.

Rojas, H. A., Martínez, J. J., & Vargas, A. Y. (2014). Selección de soportes magnéticos para la inmovilización de Ureasa. Ingeniería Y Competitividad, 296 (2), 289–296.

Sang Youn Oh, Dong IlYoo, Younsook Shin, & Gon Seo. (2005). FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydrate Research, 340(3), 417–428.

Sun, Y., & Jiayang, C. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83(1), 1–11.

Xiong, H., Pham, H. N., & Datye, A. K. (2014). Hydrothermally stable heterogeneous catalysts for conversion of biorenewables. Green Chemistry, 16(11), 4627–4643.

Zheng, Y., Zhao, J., Fuqing, X., & Yebo, L. (2014). Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science, 42, 35–53




DOI: https://doi.org/10.24054/01204211.v1.n1.2018.3191

Enlaces refback

  • No hay ningún enlace refback.