Review: Genomics of interactions between phytoplasmas, host plants and vector insects

Jose R Lamilla Monje, Liliana Franco Lara

Resumen


 

Los fitoplasmas son bacterias de la clase Mollicutes sin pared celular, que se caracterizan por tener un genoma reducido (600-900 Kb) comparado con el de otras bacterias fitopatógenas. Tienen un genoma plástico que les permite multiplicarse exitósamente en dos tipos de hospederos biológicamente distantes, como insectos vectores y plantas. Actualmente se han secuenciado seis genomas completos de fitoplasmas y hay 15 más en proceso de anotación, lo que ha permitido el estudio de los mecanismos de interacción de los fitoplasmas con sus hospederos insectos y plantas. Estas interacciones están gobernadas por proteínas inmunodominantes de membrana de los fitoplasmas como Imp, Amp y Vmp1, que están implicadas en el reconocimiento de moléculas como las cadenas de actina, miosina y la ATP sintasa del intestino y glándulas salivales de los insectos vectores, y con las cadenas de actina de las células de las plantas. También se ha demostrado que los fitoplasmas afectan la idoneidad biológica de los insectos vectores, aumentando o disminuyendo su longevidad y tiempos de oviposición. Por otra parte, las proteínas efectoras como SAP11, SAP54 y TENGU codificadas por los genomas de los fitoplasmas, se encuentran codificadas principalmente en unidades repetitivas del genoma denominadas Unidades Potencialmente Moviles (PMUs), interfieren en las rutas de síntesis de ácido jasmónico y auxinas, lo que afecta la fisiología y arquitectura de las plantas, causando síntomas asociados a fitoplasmas como virescencía y proliferación de brotes vegetativos, entre otros.

Palabras Clave: efectores, interacciones moleculares


Texto completo:

PDF

Referencias


Ahrens, U., & Seemüller, E. (1992). Detection of DNA of plant pathogenic mycoplasma like organisms by Polymerase Chain Reaction that amplifies a sequence of the 16S rRNA gene. The American Phytopathological Society, 82, 828-832. https://doi.org/10.1094/Phyto-82-828

Al-Ghaithi, A. G., Al-Subhi, A. M., Al-Mahmooli, I. H., & Al-Sadi, A. M. (2018). Genetic analysis of ‘Candidatus Phytoplasma aurantifolia’ associated with witches’ broom on acid lime trees. PeerJ, 6, e4480. https://doi.org/10.7717/peerj.4480

Alma, A., Tedeschi, R., Lessio, F., Picciau, L., Gonella, E., & Ferracini, C. (2015). Insect vectors of plant pathogenic Mollicutes in the Euro-Mediterranean region. Phytopathogenic Mollicutes, 5(2), 53. https://doi.org/10.5958/2249-4677.2015.00063.8

Andersen, M., & Liefting, L. (2013). Comparison of the complete genome sequence of two closely related isolates of ’Candidatus Phytoplasma australiense reveals genome plasticity. BMC Genomics 14, 529-544. https://doi.org/10.1186/1471-2164-14-529

Arashida, R., Kakizawa, S., Hoshi, A., Ishii, Y., Jung, H.-Y., Kagiwada, S., Yamaji, Y., Oshima, K., & Namba, S. (2008). Heterogeneic dynamics of the structures of multiple gene clusters in two pathogenetically different lines originating from the same phytoplasma. DNA and Cell Biology, 27(4), 209–217. https://doi.org/10.1089/dna.2007.0654

Arnaud, G., Malembic-Maher, S., Salar, P., Bonnet, P., Maixner, M., Marcone, C., Boudon-Padieu, E., & Foissac, X. (2007). Multilocus sequence typing confirms the close genetic interrelatedness of three distinct flavescence dorée phytoplasma strain clusters and group 16SrV phytoplasmas infecting grapevine and alder in Europe. Applied and Environmental Microbiology, 73(12), 4001-4010. https://doi.org/10.118/AEM.02323-06

Andrade, N., & Arismendi, N. (2013). DAPI Staining and Fluorescence Microscopy Techniques for Phytoplasmas. In: Dickinson M., Hodgetts J. (eds) Phytoplasma. Methods in Molecular Biology (Methods and Protocols), vol 938. Humana Press, Totowa, NJ

Arismendi, N. L.., & Carrillo, R. (2015). Survival, fecundity, and body mass of Amplicephalus curtulus influenced by “Candidatus Phytoplasma ulmi” (16SrV-A) infection. Entomologia Experimentalis et Applicata, 155(3), 176–183. https://doi.org/10.1111/eea.12303

Arricau-Bouvery, N., Duret, S., Dubrana, M. P., Batailler, B., Desqué, D., Béven, L., Danet, J., Monticone, M., Bosco, D., Malembic-Maher, S., & Foissac, X. (2018). Variable membrane protein A of flavescence dorée phytoplasma binds the midgut perimicrovillar membrane of Euscelidius variegatus and promotes adhesion to its epithelial cells. Applied and Environmental Microbiology, 84(8), e02487-17. https://doi.org/10.1128/AEM.02487- 17

Asuyama, H., & Take, T. (1973). Effects of tetracycline compounds on plant diseases caused by mycoplasma-like agents. Annals of the New York Academy of Sciences 225(1), 509 – 521. https://doi.org/10.1111/j.1749-6632.1973.tb45674.x

Azadvar, M., & Baranwal, V. K. (2010). Molecular characterization and phylogeny of a phytoplasma associated with phyllody disease of toria (Brassica rapa L. subsp. dichotoma (Roxb.)) in India. Indian Journal of Virology, 21(2), 133–139. https://doi.org/10.1007/s13337-011-0023-6

Bai, X., Correa, V. R.., Toruño, T. Y., Ammar, E.-D., Kamoun, S., & Hogenhout, S. A. (2009). AY-WB Phytoplasma secretes a protein that targets plant cell nuclei. Molecular Plant-Microbe Interactions, 22(1), 18–30. https://doi.org/10.1094/MPMI-22-1-0018

Bai, X., Zhang, J., Ewing, A., Miller, S. A., Radek, A. J., Shevchenko, D. V., Tsukerman, k., Walunas, T., Lapidus, A., Campbell, J., & Hogenhout, S. A. (2006). Living with genome instability: The adaptation of phytoplasmas to diverse environments of their insect and plant hosts. Journal of Bacteriology, 188(10), 3682–3696. https://doi.org/10.1128/JB.188.10.3682-3696.2006

Beanland, L., Hoy, C. W., Miller, S. A., & Nault, L. R. (2000). Influence of Aster Yellows Phytoplasma on the fitness of aster leafhopper (Homoptera: Cicadellidae). Annals of the Entomological Society of America, 93(2), 271–276. https://doi.org/10.1603/0013- 8746(2000)093[0271: IOAYPO]2.0.CO;2

Bekele, B., Abeysinghe, S., Hoat, T. X., Hodgetts, J., & Dickinson, M. (2011). Development of specific secA-based diagnostics for the 16SrXI and 16SrXIV phytoplasmas of the gramineae. Bulletin of Insectology, 64(SUPPL. 1), 15–16.

Bertaccini, A. (2007). Phytoplasmas: diversity, taxonomy, and epidemiology. Frontiers in Bioscience: A Journal and Virtual Library, 12, 673–689.

Bertaccini, A., & Duduk, B. (2009). Phytoplasma and phytoplasma diseases: a review of recent research. Phytopathologia Mediterranea, 48(3), 355–378. https://doi.org/10.14601/Phytopathol_Mediterr-3300

Bertaccini, A., Duduk, B., Paltrinieri, S., & Contaldo, N. (2014). Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. American Journal of Plant Sciences, 05(12), 1763–1788. https://doi.org/10.4236/ajps.2014.512191

Boonrod, K., Munteanu, B., Jarausch, B., Jarausch, W., & Krczal, G. (2012). An immunodominant membrane protein (Imp) of ‘Candidatus Phytoplasma mali’ binds to plant actin. Molecular Plant-Microbe Interactions, 25(7), 889–895. https://doi.org/10.1094/MPMI-11-11-0303

Bressan, A., Spiazzi, S., Girolami, V., & Boudon-Padieu, E. (2005). Acquisition efficiency of Flavescence dorée phytoplasma by Scaphoideus titanus Ball from infected tolerant or susceptible grapevine cultivars or experimental host plants. Vitis - Journal of Grapevine Research, 44(3), 143–146.

Bulgari, D., Casati, P., & Faoro, F. (2011). Fluorescence in situ hybridization for phytoplasma and endophytic bacteria localization in plant tissues. Journal of Microbiological Methods, 87, 220-223. https://doi.org/10.1016/j.mimet.2011.08.001

Cettul, E., & Firrao, G. (2011). Development of phytoplasma-induced flower symptoms in Arabidopsis thaliana. Physiological and Molecular Plant Pathology, 76(3–4), 204– 211. https://doi.org/10.1016/j.pmpp.2011.09.001

Chang, S.-H., Cho, S.-T., Chen, C.-L., Yang, J.-Y., & Kuo, C.-H. (2015). Draft Genome Sequence of a 16SrII-A Subgroup phytoplasma associated with Purple Coneflower (Echinacea purpurea) witches’ broom disease in Taiwan. Genome Announcements, 3(6), e01398-15. https://doi.org/10.1128/genomeA.01398-15

Chen, L. L., Chung, W. C., Lin, C. P., & Kuo, C. H. (2012). Comparative analysis of gene content evolution in phytoplasmas and mycoplasmas. PLoS ONE, 7(3). https://doi.org/10.1371/journal.pone.0034407

Chen, W., Li, Y., Wang, Q., Wang, N., & Wu, Y. (2014). Comparative genome analysis of Wheat Blue Dwarf Phytoplasma, an obligate pathogen that causes wheat blue dwarf disease in China. PLoS ONE, 9(5), e96436. https://doi.org/10.1371/journal.pone.0096436

Chung, W. C., Chen, L. L., Lo, W. S., Lin, C. P., & Kuo, C. H. (2013). Comparative analysis of the Peanut Witches’-Broom Phytoplasma genome reveals horizontal transfer of potential mobile units and effectors. PLoS ONE, 8(4), 1–10. https://doi.org/10.1371/journal.pone.0062770

Cimerman, A., Pacifico, D., Salar, P., Marzachi, C., & Foissac, X. (2009). Striking diversity of vmp1, a variable gene encoding a putative membrane protein of the stolbur phytoplasma. Applied and Environmental Microbiology, 75(9), 2951–2957. https://doi.org/10.1128/AEM.02613-08

Contaldo, N., Bertaccini, A., Paltrinieri, S., Windsor, H. M., & Windsor, G. D. (2012). Axenic culture of a plant pathogenic Phytoplasma. Phytopathologia Mediterranea, 244, 607–117.

Contaldo, N., Satta, E., Zambon, Y., Paltrinieri, S., & Bertaccini, A. (2016). Development and evaluation of different complex media for phytoplasma isolation and growth. Journal of Microbiological Methods,127, 105–110. https://doi.org/10.1016/j.mimet.2016.05.031

Cordova, I., Jones, P., Harrison, N., & Oropeza, C. (2003). In situ PCR detection of phytoplasma DNA in embryos from coconut palms with lethal yellowing disease. Molecular Plant Pathology, 4, 99–108. https://doi.org/10.1046/j.1364-3703.2003.00152.x

Davis, RE., Dally, EL., Zhao, Y., Lee, I-M., Wei, W., Wolf, TK., Beanland, L., LeDoux, DG., Johnson, DA., Fiola, JA., Walter-Peterson, H., Dami, I., & Chien, M. (2015). Unraveling the etiology of North American Grapevine Yellows (NAGY): Novel NAGY phytoplasma sequevars related to ‘Candidatus Phytoplasma pruni.’ Plant Disease, 99(8), 1087-1097. https://doi.org/10.1094/PDIS-11-14-1185-RE

Davis, RE., Dally, EL., Zhao, Y., & Wolf, TK. (2018). Genotyping points to divergent evolution of

‘Candidatus Phytoplasma asteris’ strains causing North American Grapevine Yellows and strains causing Aster Yellows. Plant Disease, 102(9), 1696-1702. https://doi.org/10.1094/PDIS-10-17-1690-RE

Deng, S., & Hiruki, C. (1991). Amplification of 16S rRNA genes from culturable and unculturable Mollicutes. Journal of Microbiological Methods, 14, 53–61. https://doi.org/10.1016/0167-7012(91)90007-D

Doi, Y., Teranaka, M., Yora, K., & Asuyama, H. (1967). Mycoplasma- or PLT group-like microorganisms found in the phloem elements of plants infected with Mulberry Dwarf, Potato Witches’ Broom, Aster Yellows, or Paulownia Witches’ Broom. Japanese Journal of Phytopathology, 33, 259–266. https://doi.org/10.3186/jjphytopath.33.259

Firrao, G. (2004). “Candidatus Phytoplasma”, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. International Journal of Systematic and Evolutionary Microbiology, 54(4), 1243–1255. https://doi.org/10.1099/ijs.0.02854-0

Fischer, A., Santana-Cruz, I., Wambua, L., Olds, C., Midega, C., Dickinson, M., Kawicha, P., Khan, Z., Masiga, D., Jores, J., & Schneider, B. (2016). Draft genome sequence of “Candidatus Phytoplasma

oryzae” strain mbita1, the causative agent of Napier Grass Stunt Disease in Kenya. Genome Announcements, 4(2), e00297-16. https://doi.org/10.1128/genomeA.00297-16

Franco-Lara L, Perilla-Henao LM. Phytoplasma diseases in trees of Bogotá, Colombia: a serious risk for urban trees and Crops. In A. Bertaccini (ed.): Phytoplasmas and phytoplasma disease management: how to reduce their economic impact, Bologna, Italy;481 2014; pp. 90-100.

Foissac, X., & P. Carle. 2017. A draft genome of ‘Candidatus Phytoplasma aurantifolia’ the agent of the witches-broom disease of lime. NCBI, USA. https://www.ncbi.nlm.nih.gov/nuccore/NZ_MWKN01000002.1 (accessed Jul. 2017).

Galetto, L., Fletcher, J., Bosco, D., Turina, M., Wayadande, A., & Marzachì, C. (2008). Characterization of putative membrane protein genes of the ‘Candidatus Phytoplasma asteris’, Chrysanthemum yellows isolate. Canadian Journal of Microbiology, 54(5), 341–351. https://doi.org/10.1139/W08-010

Galetto, L., Miliordos, D. E., Pegoraro, M., Sacco, D., Veratti, F., Marzachì, C., & Bosco, D. (2016). Acquisition of flavescence dorée phytoplasma by Scaphoideus titanus ball from different grapevine varieties. International Journal of Molecular Sciences, 17(9), 1563-1574. https://doi.org/10.3390/ijms17091563

Galetto, L., Miliordos, D., Roggia, C., Rashidi, M., Sacco, D., Marzachì, C., & Bosco, D. (2014). Acquisition capability of the grapevine Flavescence dorée by the leafhopper vector Scaphoideus titanus Ball correlates with phytoplasma titre in the source plant. Journal of Pest Science, 87(4), 671–679. https://doi.org/10.1007/s10340-014-0593-3

Gundersen, D. E., Lee, I. M., Rehner, S. A., Davis, R. E., & Kingsbury, D. T. (1994). Phylogeny of mycoplasmalike organisms (phytoplasmas): A basis for their classification. Journal of Bacteriology, 176(17), 5244–5254. https://doi.org/10.1128/jb.176.17.5244-5254.1994

Gundersen, D.E., & Lee, I.M. 1996. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal iniciator pairs. Phytopathologia Mediterranea, 35, 144-151.

Hodgetts J., Crossley D., Dickinson M. (2013) Techniques for the Maintenance and Propagation of Phytoplasmas in Glasshouse Collections of Catharanthus roseus. In: Dickinson M., Hodgetts J. (eds) Phytoplasma. Methods in Molecular Biology (Methods and Protocols), vol 938. Humana Press, Totowa, NJ

Hodgetts, J., Boonham, N., Mumford, R., & Dickinson, M. (2009). Panel of 23S rRNA gene- based real-time PCR assays for improved universal and group-specific detection of phytoplasmas. Applied and Environmental Microbiology, 75(9), 2945–2950. https://doi.org/10.1128/AEM.02610-08

Hodgetts, J., Boonham, N., Mumford, R., Harrison, N., & Dickinson, M. (2008). Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of “Candidatus Phytoplasma.” International Journal of Systematic and Evolutionary Microbiology, 58(8), 1826–1837. https://doi.org/10.1099/ijs.0.65668-0

Hogenhout, S. A., Oshima, K., Ammar, E. D., Kakizawa, S., Kingdom, H. N., & Namba, S. (2008). Phytoplasmas: Bacteria that manipulate plants and insects. Molecular Plant Pathology, 9(4), 403–423. https://doi.org/10.1111/j.1364-3703.2008.00472.x

Hogenhout, S. A., Van der Hoorn, R. A. L., Terauchi, R., & Kamoun, S. (2009). Emerging concepts in effector biology of plant-associated organisms. Molecular Plant-Microbe Interactions, 22(2), 115–122. https://doi.org/10.1094/MPMI-22-2-0115

Honma, T., & Goto, K. (2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 409, 525–529. https://doi.org/10.1038/35054083

Hoshi, A., Oshima, K., Kakizawa, S., Ishii, Y., Ozeki, J., Hashimoto, M., Komatsu, K., Kagiwada, S., Yamaji, Y., & Namba, S. (2009). A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proceedings of the National Academy of Sciences, 106(15), 6416–6421. https://doi.org/10.1073/pnas.0813038106

IRCPM. (2004). “Candidatus Phytoplasma”, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. International Journal of Systematic and Evolutionary Microbiology, 54(4), 1243–1255. https://doi.org/10.1099/ijs.0.02854-0

Ishiie, T., Doi, Y., Yora, K., & Asuyam, H. (1967). suppressive effects of antibiotics of tetracycline group on symptom development of Mulberry Dwarf Disease. Japanese Journal of Phytopathology, 33(4), 267–275. https://doi.org/10.3186/jjphytopath.33.267

Kakizawa, S., Makino, A., Ishll, Y., Tamaki, H., & Kamagata, Y. (2014). Draft genome sequence of “Candidatus Phytoplasma asteris” strain, 2(5), 9–10. https://doi.org/10.1128/genomeA.00944-14.

Kakizawa, S., Oshima, K., Jung, H., Suzuki, S., Nishigawa, H., Arashida, R., Miyata, S., Ugaki, M., Kishino, H., & Namba, S. (2006). Positive selection acting on a surface membrane protein of the plant- pathogenic phytoplasmas positive selection acting on a surface membrane protein of the plant-pathogenic phytoplasmas, Journal of Bacteriology, 188(9), 3424–3428. https://doi.org/ 10.1128/JB.188.9.3424-3428.2006

Kakizawa, S., Oshima, K., Nishigawa, H., Jung, H. Y., Wei, W., Suzuki, S., Tanaka, M., Miyata, S., Ugaki, M., & Namba, S. (2004). Secretion of immunodominant membrane protein from onion yellows phytoplasma through the Sec protein-translocation system in Escherichia coli. Microbiology, 150(1), 135–142. https://doi.org/10.1099/mic.0.26521-0

Kakizawa, S., & Yoneda, Y. (2015). The role of genome sequencing in phytoplasma research. Phytopathogenic Mollicutes, 5(1), 19. https://doi.org/10.5958/2249- 4677.2015.00058.4

Kanatiwela, C., Damayanthi, M., de Silva, R., Dickinson, M. de Silva, N., & Udagama, P. (2015). Molecular and scanning electron microscopic proof of phytoplasma associated with Areca Palm Yellow Leaf Disease in Sri Lanka. Plant Disease, 99(11), 1641. https://doi.org/10.1094/PDIS-01-15-0072-PDN

Kawicha, P., Dickinson, M., & Hodgetts, J. Genome study of napier grass stunt phytoplasma. NCBI, USA. https://www.ncbi.nlm.nih.gov/nuccore/NZ_JHUK00000000.1 (accessed Jun. 2018).

Khan, a J., Botti, S., Al-Subhi, a M., Gundersen-Rindal, D. E., & Bertaccini, a F. (2002). Molecular identification of a new phytoplasma associated with alfalfa witches’-broom in oman. Phytopathology, 92(10), 1038–1047. https://doi.org/10.1094/PHYTO.2002.92.10.1038

Kube, M., Mitrovic, J., Duduk, B., Rabus, R., & Seemüller, E. (2012). Current view on phytoplasma genomes and encoded metabolism. The Scientific World Journal, 185942), 1–25. https://doi.org/10.1100/2012/185942

Kube, M., Schneider, B., Kuhl, H., Dandekar, T., Heitmann, K., Migdoll, A. M., Reinhardt, R., & Seemüller, E. (2008). The linear chromosome of the plant-pathogenic mycoplasma “Candidatus Phytoplasma mali.” BMC Genomics, 9, 1–14. https://doi.org/10.1186/1471-2164-9-306

Lee, I.-M., Davis, R. E., & Gundersen-Rindal, D. E. (2000). Phytoplasma: Phytopathogenic Mollicutes. Annual Review of Microbiology, 54(1), 221–255. https://doi.org/10.1146/annurev.micro.54.1.221

Lee, I.-M., Gundersen-Rindal, D. E., Davis, R. E., & Bartoszyk, I. M. (1998). Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. International Journal of Systematic Bacteriology, 48, 1153–1169. https://doi.org/10.1099/00207713-48-4-1153

Lee, I.-M., Hammond, R. W., Davis, R. E., & Gundersen, D. E. (1993). Universal amplification and analysis of pathogen 16S rDNA for classification and identification of Mycoplasmalike Organisms. Molecular Plant Pathology, 83, 834–842. https://doi.org/10.1094/Phyto-83-834

Lee, I-M., Gundersen-Rindal, DE., Davis, R. E., Bottner, K. D., Marcone, C., & Seemüller, E. (2004). “Candidatus Phytoplasma asteris”, a novel phytoplasma taxon associated with aster yellows and related diseases. International Journal of Systematic and Evolutionary Microbiology, 54, 1037-1048. https://doi.org/10.1099/ijs.0.02843-0

Lee, I.-M., Shao, J., Bottner-Parker, K. D., Gundersen-Rindal, D. E., Zhao, Y., & Davis, R. E. (2015). Draft genome sequence of “Candidatus Phytoplasma pruni” strain CX, a plant-pathogenic bacterium. Genome Announcements, 1(3), e01117-15. https://doi.org/10.1128/genomeA.00356-13.

Lee, I. M., Zhao, Y., & Bottner, K. D. (2006). SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma group. Molecular and Cellular Probes, 20(2), 87–91. https://doi.org/10.1016/j.mcp.2005.10.001

MacLean, A. M., Orlovskis, Z., Kowitwanich, K., Zdziarska, A. M., Angenent, G. C., Immink, R. G. H., & Hogenhout, S. A. (2014). Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLoS Biology, 12(4). https://doi.org/10.1371/journal.pbio.1001835

Maejima, K., Iwai, R., Himeno, M., Komatsu, K., Kitazawa, Y., Fujita, N., Ishikawa, K., Fukuoka, M., Minato, N., Yamaji, Y., Oshima, K., & Namba, S. (2014). Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody. Plant Journal, 78(4), 541–554. https://doi.org/10.1111/tpj.12495

Malembic-Maher, S., Salar, P., Filippin, L., Carle, P., Angelini, E., & Foissac, X. (2011). Genetic diversity of European phytoplasmas of the 16SrV taxonomic group and proposal of “Candidatus phytoplasma rubi.” International Journal of Systematic and Evolutionary Microbiology, 61(9), 2129–2134. https://doi.org/10.1099/ijs.0.025411-0

Marcone, C., Gibb, K. S., Streten, C., & Schneider, B. (2004). “Candidatus Phytoplasma spartii”, “Candidatus Phytoplasma rhamni” and “Candidatus Phytoplasma allocasuarinae”, respectively associated with spartium witches’-broom, buckthorn witches’-broom and allocasuarina yellows diseases. International Journal of Systematic and Evolutionary Microbiology, 54(4), 1025–1029. https://doi.org/10.1099/ijs.0.02838-0

Marcone, C., Lee, I. M., Davis, R. E., Ragozzino, A., & Seemuller, E. (2000). Classification of aster yellows-group phytoplasmas based on combined analyses of rRNA and tuf gene sequences. International Journal of Systematic and Evolutionary Microbiology, 50(5), 1703–1713. https://doi.org/10.1099/00207713-50-5-1703

Martini, M., Lee, I. M., Bottner, K. D., Zhao, Y., Botti, S., Bertaccini, A., Harrison, N., Carrato, L., Marcone, C., Khan, A., & Osler, R. (2007). Ribosomal protein gene-based phylogeny for finer differentiation and classification of phytoplasmas. International Journal of Systematic and Evolutionary Microbiology, 57(9), 2037–2051. https://doi.org/10.1099/ijs.0.65013-0

Minato, N., Himeno, M., Hoshi, A., Maejima, K., Komatsu, K., Takebayashi, Y., Kasahara, H., Yusa, A., Yamaji, Y., Oshima, K., Kamiya, Y., & Namba, S. (2014). The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways. Scientific Reports, 4, 1-7. https://doi.org/10.1038/srep07399

Mitrović, J., Kakizawa, S., Duduk, B., Oshima, K., Namba, S., & Bertaccini, A. (2011a). The groEL gene as an additional marker for finer differentiation of ’Candidatus Phytoplasma asteris’-related strains. Annals of Applied Biology, 159(1), 41–48. https://doi.org/10.1111/j.1744-7348.2011.00472.x

Mitrović, J., Contaldo, N., Paltrinieri, S., Mejia, JF., Mori, N., Bertaccini, A., & Duduk, B. (2011b). The use of groEL gene for characterisation of aster yellows phytoplasmas in field collected samples. Bulletin of Insectology, 64: S17-S18. https://doi.org/10.1094 / PDIS-12-12-1182-RE

Mitrović, J., Siewert, C., Duduk, B., Hecht, J., Mölling, K., Broecker, F., Beyerlein, P., Bütther, C., Bertaccini., & Kube, M. (2014). Generation and analysis of draft sequences of “stolbur” phytoplasma from multiple displacement amplification templates. Journal of Molecular Microbiology and Biotechnology, 24(1), 1–11. https://doi.org/10.1159/000353904

Musetti, R., & Favali, M. (2004). Microscopy techniques applied to the study of phytoplasma diseases: traditional and innovative methods. Current Issues on Multidisciplinary Microcopy Research and Education, 72-80

Musetti, R., Buxa, S., De Marco, F., Loschi, A., Polizzotto, R., Kogel, K., & Van Bel, A. (2012).

Phytoplasma-triggered Ca2+ influx is involved in sieve-tube blockage. Molecular Plant-Microbe Interactions, 26(4), 379-366. https://doi.org/10.1094/MPMI-08-12-0207-R

Neriya, Y., Maejima, K., Nijo, T., Tomomitsu, T., Yusa, A., Himeno, M., Netsu, O. Hamamoto, H., Oshima, K., & Namba, S. (2014). Onion yellow phytoplasma P38 protein plays a role in adhesion to the hosts. FEMS Microbiology Letters. 36(12) 115–122. https://doi.org/10.1111/1574-6968.12620

Nipah, J. O., Jones, P., & Dickinson, M. J. (2007). Detection of lethal yellowing phytoplasma in embryos from coconut palms infected with Cape St Paul wilt disease in Ghana. Plant Pathology, 56(5), 777–784. https://doi.org/10.1111/j.1365-3059.2007.01623.x

Olivier, C. Y., Galka, B., & Séguin-Swartz, G. (2010). Detection of aster yellows phytoplasma DNA in seed and seedlings of canola (Brassica napus and B. rapa) and AY strain identification. Canadian Journal of Plant Pathology, 32(3), 298–305. https://doi.org/10.1080/07060661.2010.508616

Orlovskis, Z., Canale, M. C., Haryono, M., Lopes, J. R. S., Kuo, C. H., & Hogenhout, S. A. (2017). A few sequence polymorphisms among isolates of Maize bushy stunt phytoplasma associate with organ proliferation symptoms of infected maize plants. Annals of Botany, 119(5), 869–884. https://doi.org/10.1093/aob/mcw213

Orlovskis, Z., & Hogenhout, S. A. (2016). a bacterial parasite effector mediates insect vector attraction in host plants independently of developmental changes. Frontiers in Plant Science, 7(June), 1–9. https://doi.org/10.3389/fpls.2016.00885

Oropeza, C., Cordova, I., Puch-Hau, C., Castillo, R., Chan, J. L., & Sáenz, L. (2017). Detection of lethal yellowing phytoplasma in coconut plantlets obtained through in vitro germination of zygotic embryos from the seeds of infected palms. Annals of Applied Biology, 171(1), 28–36. https://doi.org/10.1111/aab.12351

Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H. Y., Wei, W., Suzuki, S., Arashida, R., Nakata, D., Miyata, S., Ugaki, M., & Namba, S. (2004). Reductive evolution suggested from the complete genome sequence of a plant- pathogenic phytoplasma. Nature Genetics, 36(1), 27–29. https://doi.org/10.1038/ng1277

Oshima, K., Maejima, K., & Namba, S. (2013). Genomic and evolutionary aspects of phytoplasmas. Frontiers in Microbiology, 4, 1–8. https://doi.org/10.3389/fmicb.2013.00230

Pacifico, D., Galetto, L., Rashidi, M., Abbà, S., Palmano, S., Firrao, G., Bosco, C., & Marzachì, C. (2015). Decreasing global transcript levels over time suggest that phytoplasma cells enter stationary phase during plant and insect colonization. Applied and Environmental Microbiology, 81(7), 2591–2602. https://doi.org/10.1128/AEM.03096-14

Pérez-López, E., Luna-Rodríguez, M., Olivier, C. Y., & Dumonceaux, T. J. (2016). The underestimated diversity of phytoplasmas in Latin America. International Journal of Systematic and Evolutionary Microbiology, 66(1), 492–513. https://doi.org/10.1099/ijsem.0.000726

Perilla, LM., Dickinson, M., & Franco-Lara, L. (2012) First report of 'Candidatus Phytoplasma asteris' affecting woody hosts (Fraxinus uhdei, Populus nigra, Pittosporum undulatum and Croton spp.) in Colombia. Plant Disease 2012 96: 1372. doi: 10.1094/PDIS-03-12-0290-PDN

Perilla-Henao, L., & Franco-Lara, L. (2013). Especies arbóreas de las familias euphorbiaceae, pittosporaceae y salicaceae son infectadas por ‘Ca. phytoplasma fraxini’ y ‘Ca. phytoplasma asteris’ en infecciones mixtas en Bogotá, Colombia. Revista Facultad de Ciencias Básicas, 9, 248–265. https://doi.org/10.18359/rfcb.386

Polano, C., Moruzzi, S., Ermacora, P., Ferrini, F., Martini, M., & Firrao, G. (2018). Metagenomics reveals mixed infection of spiroplasma and phytoplasma in chicory. NCBI, USA. https://www.ncbi.nlm.nih.gov/nuccore/PUUG00000000.1/ (accessed Jun. 2018).

Pracros, P., Renaudin, J., Eveillard, S., Mouras, A., & Hernould, M. (2006). Tomato flower abnormalities induced by Stolbur Phytoplasma infection are associated with changes of expression of floral development genes. Molecular Plant-Microbe Interactions, 19(1), 62–68. https://doi.org/10.1094/MPMI-19-0062

Quaglino, F., Kube, M., Jawhari, M., Abou-Jawdah, Y., Siewert, C., Choueiri, E., … Bianco, P. A. (2015). “Candidatus Phytoplasma phoenicium” associated with almond witches’- broom disease: From draft genome to genetic diversity among strain populations Microbial genetics, genomics and proteomics. BMC Microbiology, 15(1), 1–15. https://doi.org/10.1186/s12866-015-0487-4

Rashid, U., Bilal, S., Bhat, K. A., Shah, T. A., Wani, T. A., Bhat, F. A., … Nazir, N. (2018). Phytoplasma effectors and their role in plant-insect interaction. International Journal of Current Microbiology and Applied Sciences, 7(2), 1136–1148. https://doi.org/10.20546/ijcmas.2018.702.141

Rashidi, M., D’Amelio, R., Galetto, L., Marzachì, C., & Bosco, D. (2014). Interactive transmission of two phytoplasmas by the vector insect. Annals of Applied Biology, 165(3), 404–413. https://doi.org/10.1111/aab.12146

Rashidi, M., Galetto, L., Bosco, D., Bulgarelli, A., Vallino, M., Veratti, F., & Marzachi, C. (2015). Role of the major antigenic membrane protein in phytoplasma transmission by two insect vector species. BMC Microbiology, 15(1), 1–12. https://doi.org/10.1186/s12866-015-0522-5

Saccardo, F., Martini, M., Palmano, S., Ermacora, P., Scortichini, M., Loi, N., & Firrao, G. (2012). Genome drafts of four phytoplasma strains of the ribosomal group 16SrIII. Microbiology, 158 (11), 2805–2814. https://doi.org/10.1099/mic.0.061432-0

Sparks, M. E., Bottner-Parker, K. D., Gundersen-Rindal, D. E., & Lee, I. M. (2018). Draft genome sequence of the New Jersey aster yellows strain of ‘Candidatus Phytoplasma asteris.’ PLoS ONE, 13(2), 1–16. https://doi.org/10.1371/journal.pone.0192379

Sugio, A., Kingdom, H. N., MacLean, A. M., Grieve, V. M., & Hogenhout, S. A. (2011). Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proceedings of the National Academy of Sciences, 108(48), E1254–E1263. https://doi.org/10.1073/pnas.1105664108

Sugio, A., MacLean, A. M., Kingdom, H. N., Grieve, V. M., Manimekalai, R., & Hogenhout, S. A. (2011). diverse targets of phytoplasma effectors: from plant development to defense against insects. Annual Review of Phytopathology, 49(1), 175–195. https://doi.org/10.1146/annurev-phyto-072910-095323

Suzuki, S., Oshima, K., Kakizawa, S., Arashida, R., Jung, H.-Y., Yamaji, Y., Nishigawa, H., Uqaki, M., & Namba, S. (2006). Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proceedings of the National Academy of Sciences,103(11), 4252–4257. https://doi.org/10.1073/pnas.0508668103

Thomas, S. & Balasundaran, M. (1998). In situ detection of phytoplasma in spike-disease-affected sandal using DAPI stain. Current Science 74:989–993.

Tomkins, M., Kliot, A., Marée, A. F., & Hogenhout, S. A. (2018). A multi-layered mechanistic modelling approach to understand how effector genes extend beyond phytoplasma to modulate plant hosts, insect vectors and the environment. Current Opinion in Plant Biology, 44, 39–48. https://doi.org/10.1016/j.pbi.2018.02.002

Toruño, T. Y., Seruga Musić, M., Simi, S., Nicolaisen, M., & Hogenhout, S. A. (2010). Phytoplasma PMU1 exists as linear chromosomal and circular extrachromosomal elements and has enhanced expression in insect vectors compared with plant hosts. Molecular Microbiology, 77(6), 1406–1415. https://doi.org/10.1111/j.1365- 2958.2010.07296.x

Town, JR., Wist, T., Perez-Lopez, E., Olivier, CY., Dumonceaux, TJ. 2018. Genome sequence of a plant-pathogenic bacterium, “Candidatus Phytoplasma asteris” strain TW1. Microbiology Resource Announcements 7:e01109-18. https://doi.org/10.1128/MRA.01109-18.

Tran-Nguyen, L. T. T., & Gibb, K. S. (2006). Extrachromosomal DNA isolated from tomato big bud and ´Candidatus Phytoplasma australiense´ phytoplasma strains. Plasmid, 56(3), 153–166. https://doi.org/10.1016/j.plasmid.2006.05.009

Tran-Nguyen, L. T. T., Kube, M., Schneider, B., Reinhardt, R., & Gibb, K. S. (2008). Comparative genome analysis of “Candidatus Phytoplasma australiense” (subgroup tuf- Australia I; rp-A) and “Ca. phytoplasma asteris” strains OY-M and AY-WB. Journal of Bacteriology, 190(11), 3979–3991. https://doi.org/10.1128/JB.01301-07

Wei, W., Davis, R. E., Jomantiene, R., & Zhao, Y. (2008). Ancient, recurrent phage attacks and recombination shaped dynamic sequence-variable mosaics at the root of phytoplasma genome evolution. Proceedings of the National Academy of Sciences, 105(33), 11827–11832. https://doi.org/10.1073/pnas.0805237105

Wei, W., Lee, I. M., Davis, R. E., Suo, X., & Zhao, Y. (2008). Automated RFLP pattern comparison and similarity coefficient calculation for rapid delineation of new and distinct phytoplasma 16Sr subgroup lineages. International Journal of Systematic and Evolutionary Microbiology, 58(10), 2368–2377. https://doi.org/10.1099/ijs.0.65868-0

Weintraub, P. G., & Beanland, L. (2006). Insect vectors of phytoplasmas. Annual Review of Entomology, 51(1), 91–111.https://doi.org/10.1146/annurev.ento.51.110104.151039

Zamorano, A., & Fiore, N. (2016). Draft genome sequence of 16SrIII-J phytoplasma, a plant pathogenic bacterium with a broad spectrum of hosts. Genome Announcements, 4(3), e00602-16. https://doi.org/10.1128/genomeA.00602-16

Zhang, J., Hogenhout, S. A., Nault, L. R., Hoy, C. W., & Miller, S. A. (2004). Molecular and symptom analyses of phytoplasma strains from lettuce reveal a diverse population. Phytopathology, 94(8), 842–849. https://doi.org/10.1094/PHYTO.2004.94.8.842

Zhao, Y., Wei, W., Lee, I. M., Shao, J., Suo, X., & Davis, R. E. (2009). Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). International Journal of Systematic and Evolutionary Microbiology, 59(10), 2582–2593. https://doi.org/10.1099/ijs.0.010249-0




DOI: https://doi.org/10.24054/01204211.v3.n3.2019.3574

Enlaces refback

  • No hay ningún enlace refback.