A facile microwave-assisted synthesis of ZnO nanoparticles and their photocatalytic activity: Effect of pH

Aura S. Merlano, Ángel Salazar

Resumen


Este estudio reporta una síntesis fácil, libre de surfactantes y asistida por microondas para la producción de nanopartículas de óxido de zinc (ZnO). Se investigó el efecto del valor del pH sobre las propiedades químicas, ópticas, morfológicas y fotocatalíticas de las nanopartículas de ZnO. Las nanopartículas se caracterizaron mediante microscopía electrónica de barrido (SEM), espectroscopía infrarroja por transformada de Fourier (FTIR), espectroscopía de rayos X por dispersión de energía (EDS) y espectroscopía UV-visible (UV-Vis). El análisis SEM muestra que el tamaño de las partículas disminuye con el aumento del valor de pH. Los espectros UV-Vis muestran picos de absorción excitónica alrededor de 334-359 nm. Se encontró que la brecha de energía de las muestras disminuye con el aumento del valor de pH. Finalmente, se evaluó la eficiencia fotocatalítica de los nanomateriales de ZnO mediante la degradación de naranja de metileno (MO) bajo irradiación de luz UV-A y se logró una eficiencia de degradación del colorante del 93.04% para la muestra de ZnO con pH-13. Los resultados experimentales confirman que la ruta propuesta para producir ZnO es fácil, reproducible y amigable con el medio ambiente. Además, el nano ZnO tiene un gran potencial como fotocatalizador para eliminar compuestos orgánicos.

Texto completo:

PDF

Referencias


C. B. Ong, L. Y. Ng, and A. W. Mohammad, “A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications,” Renew. Sustain. Energy Rev., vol. 81, no. July 2016, pp. 536–551, 2018, doi: 10.1016/j.rser.2017.08.020.

A. Nigam and S. J. Pawar, “Synthesis and characterization of ZnO nanoparticles to optimize drug loading and release profile for drug delivery applications,” in Materials Today: Proceedings, 2019, vol. 26, doi: 10.1016/j.matpr.2020.02.554.

E. Kusiak-Nejman et al., “Size-dependent effects of ZnO nanoparticles on the photocatalytic degradation of phenol in a water solution,” Appl. Surf. Sci., vol. 541, no. November 2020, p. 148416, 2020, doi: 10.1016/j.apsusc.2020.148416.

J. Jiang, J. Pi, and J. Cai, “The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications,” Bioinorg. Chem. Appl., vol. 2018, p. 18, 2018.

P. K. Mishra, H. Mishra, A. Ekielski, S. Talegaonkar, and B. Vaidya, “Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications,” Drug Discov. Today, vol. 22, no. 12, 2017, doi: 10.1016/j.drudis.2017.08.006.

S. Sabir, M. Arshad, and S. K. Chaudhari, “Zinc oxide nanoparticles for revolutionizing agriculture: Synthesis and applications,” Sci. World J., vol. 2014, 2014, doi: 10.1155/2014/925494.

O. M. El-Feky, E. A. Hassan, S. M. Fadel, and M. L. Hassan, “Use of ZnO nanoparticles for protecting oil paintings on paper support against dirt, fungal attack, and UV aging,” J. Cult. Herit., vol. 15, no. 2, 2014, doi: 10.1016/j.culher.2013.01.012.

K. Kamburova, N. Boshkova, N. Boshkov, and T. Radeva, “Composite coatings with polymeric modified ZnO nanoparticles and nanocontainers with inhibitor for corrosion protection of low carbon steel,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 609, 2021, doi: 10.1016/j.colsurfa.2020.125741.

R. Shashanka, H. Esgin, V. M. Yilmaz, and Y. Caglar, “Fabrication and characterization of green synthesized ZnO nanoparticle based dye-sensitized solar cells,” J. Sci. Adv. Mater. Devices, vol. 5, no. 2, 2020, doi: 10.1016/j.jsamd.2020.04.005.

R. Kumar, G. Kumar, and A. Umar, “Zinc oxide nanomaterials for photocatalytic degradation of methyl orange: A review,” Nanosci. Nanotechnol. Lett., vol. 6, no. 8, pp. 631–650, 2014, doi: 10.1166/nnl.2014.1879.

M. J. Chithra, M. Sathya, and K. Pushpanathan, “Effect of pH on crystal size and photoluminescence property of zno nanoparticles prepared by chemical precipitation method,” Acta Metall. Sin. (English Lett., vol. 28, no. 3, pp. 394–404, 2015, doi: 10.1007/s40195-015-0218-8.

D. Dodoo-Arhin, T. Asiedu, B. Agyei-Tuffour, E. Nyankson, D. Obada, and J. M. Mwabora, “Photocatalytic degradation of Rhodamine dyes using zinc oxide nanoparticles,” Mater. Today Proc., no. xxxx, 2020, doi: 10.1016/j.matpr.2020.04.597.

N. Salah et al., “High-energy ball milling technique for ZnO nanoparticles as antibacterial material.,” Int. J. Nanomedicine, vol. 6, pp. 863–869, 2011, doi: 10.2147/ijn.s18267.

V. Gerbreders et al., “Hydrothermal synthesis of ZnO nanostructures with controllable morphology change,” CrystEngComm, vol. 22, no. 8, 2020, doi: 10.1039/c9ce01556f.

A. Šarić, I. Despotović, and G. Štefanić, “Solvothermal synthesis of zinc oxide nanoparticles: A combined experimental and theoretical study,” J. Mol. Struct., vol. 1178, 2019, doi: 10.1016/j.molstruc.2018.10.025.

J. Osuntokun, D. C. Onwudiwe, and E. E. Ebenso, “Green synthesis of ZnO nanoparticles using aqueous Brassica oleracea L. var. italica and the photocatalytic activity,” Green Chem. Lett. Rev., vol. 12, no. 4, pp. 444–457, 2019, doi: 10.1080/17518253.2019.1687761.

J. Wojnarowicz, T. Chudoba, and W. Lojkowski, “A Review of Microwave Synthesis of Zinc Oxide Nanomaterials : Reactants , Process Parameters and Morphologies,” Nanomaterials, vol. 10, no. 1086, 2020, doi: doi:10.3390/nano10061086.

S. S. Alias, A. B. Ismail, and A. A. Mohamad, “Effect of pH on ZnO nanoparticle properties synthesized by sol-gel centrifugation,” J. Alloys Compd., vol. 499, no. 2, pp. 231–237, 2010, doi: 10.1016/j.jallcom.2010.03.174.

M. F. Kasim, N. Kamarulzaman, R. Rusdi, and A. A. Rahman, “Effect of pH on the Crystal Growth of ZnO Nanomaterials and Their Band gap Energies,” J. Phys. Conf. Ser., vol. 1083, no. 1, pp. 0–5, 2018, doi: 10.1088/1742-6596/1083/1/012043.

R. Ashraf, S. Riaz, S. S. Hussain, and S. Naseem, Effect of pH on Properties of ZnO Nanoparticles, vol. 2, no. 10. Elsevier Ltd., 2015.

R. A. Abdol Aziz, S. F. Abd Karim, and N. A. Rosli, “The effect of ph on zinc oxide nanoparticles characteristics synthesized from banana peel extract,” Key Eng. Mater., vol. 797, pp. 271–279, 2019, doi: 10.4028/www.scientific.net/KEM.797.271.

L. F. Koao, F. B. Dejene, and H. C. Swart, “Effect of pH on the properties of ZnO nanostructures prepared by chemical bath deposition method,” Proceeding SAIP, vol. ISBN: 978-, pp. 43–48, 2015.

R. Wahab, Y. S. Kim, and H. S. Shin, “Synthesis, characterization and effect of pH variation on zinc oxide nanostructures,” Mater. Trans., vol. 50, no. 8, pp. 2092–2097, 2009, doi: 10.2320/matertrans.M2009099.

G. Amin, M. H. Asif, A. Zainelabdin, S. Zaman, O. Nur, and M. Willander, “Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method,” J. Nanomater., vol. 2011, 2011, doi: 10.1155/2011/269692.

N. Y. Mostafa, Z. K. Heiba, and M. M. Ibrahim, “Structure and optical properties of ZnO produced from microwave hydrothermal hydrolysis of tris(ethylenediamine)zinc nitrate complex,” J. Mol. Struct., vol. 1079, pp. 480–485, 2015, doi: 10.1016/j.molstruc.2014.09.059.

J. Tauc, Amorphous and Liquid Semiconductors. London, 1974.

S.-Y. Pung, W.-P. Lee, and A. Aziz, “Kinetic Study of Organic Dye Degradation Using ZnO Particles with Different Morphologies as a Photocatalyst,” Int. J. Inorg. Chem., vol. 2012, pp. 1–9, 2012, doi: 10.1155/2012/608183.

C. Hu, Y. C. Chu, Y. R. Lin, H. C. Yang, and K. H. Wang, “Photocatalytic dye and Cr(VI) degradation using a metal-free polymeric g-C3N4 synthesized from solvent-treated urea,” Polymers (Basel)., vol. 11, no. 1, 2019, doi: 10.3390/polym11010182.

N. Kislov, J. Lahiri, H. Verma, D. Y. Goswami, E. Stefanakos, and M. Batzill, “Photocatalytic degradation of methyl orange over single crystalline ZnO: Orientation dependence of photoactivity and photostability of ZnO,” Langmuir, vol. 25, no. 5, pp. 3310–3315, 2009, doi: 10.1021/la803845f.

M. A. Chamjangali and S. Boroumand, “Synthesis of flower-like Ag-ZnO nanostructure and its application in the photodegradation of methyl orange,” J. Braz. Chem. Soc., vol. 24, no. 8, pp. 1329–1338, 2013, doi: 10.5935/0103-5053.20130168.




DOI: https://doi.org/10.24054/01204211.v2.n2.2020.4436

Enlaces refback

  • No hay ningún enlace refback.