Efecto de la configuración electrónica en la energía de disociación de complejos M(EN-Pyr2)2+

Amanda L. Chaparro, Richard W. Vachet

Resumen


Se realizó un estudio sistemático de la energía de disociación de ciertos complejos metálicos con metales transición usando un espectrómetro de masas, el cual estaba equipado con una fuente de ionización por electrovaporización (ESI). Se sintetizaron complejos metálicos modelo, usando los metales de transición de Mn+2 hasta Zn+2, y el ligando EN-Pyr2 (Dos piridinas unidas a etilenamina). Estos complejos fueron ionizados usando ESI, luego se aisló el pico de interés, y
posteriormente se disoció, utilizando disociación inducida por colisión (CID) para generar los iones producto. La energía relativa de disociación fue determinada mediante el método de energía variable CID. Se observaron diferencias en la
energía relativa de disociación dependiendo del ión metálico, de igual manera se observo que la energía de disociación disminuía a medida que el radio iónico se hacia menor (i.e. Mn+2<Fe+2<Co+2<Ni+2<Cu+2>Zn+2). excepto con Cu+2 al parecer, debido a que este último se reduce fácilmente.


Texto completo:

ART 6

Referencias


Dunbar, R.C,; McMahon, T.B. Activation of unimolecular reactions by ambient blackbody radiation. Science. 1998, 279, 194-197.

Schnier P.D.; Klassen, J.S.; Strittmatter, E.F.; Williams, E.R. Activation energies for dissociation of double strand oligonucleotide anions: evidence for Watson-Crick base pairing in vacuo. J. Am. Chem. Soc. 1998, 120, 9605-9613.

Schnier P.D.; Price, W.D.; Jockusch, R.A.; Williams, E.R. Blackbody infrared radiative dissociation of bradykinin and its analogous: energetics, dynamics, and evidence for saltbridge

structures in the gas phase. J. Am. Chem. Soc. 1996, 118, 7178-7189.

Klassen, J.S.; Schnier P.D.; Williams, E.R. Blackbody infrared radiative dissociation of oligonucleotide anions. J. Am. Soc. Mass Spectrom. 1998, 9, 1117-1124.

Price, W.D.; Jockusch, R.A.; Williams, E.R. Binding energies of protonated betaine complexes: a probe of zwitterion structure in the gas phase. J. Am. Chem. Soc. 1998, 120,

-3484.

Strittmatter, E.F.; Schnier P.D.; Klassen, J.S.; Williams, E.R. Dissociation energies of deoxyribose nucleoide dimmer anions measured using Blackbody infrared radiative dissociation. J. Am. Soc. Mass Spectrom. 1999, 10, 1095-1104.

Pesche, M.; Blades, A., Kebarle, P. Hydration energies and entropies for Mg2+, Ca2+, Sr2+, and Ba2+ from gas phase ion-water molecule equilibria determination. J. Phys. Chem.

, 102, 9978-9985.

Bushnell, J.E.; Kemper, P.R.; Bowers, M.T. Factors affecting s bond activation in simple systems: measurements of experimental binding energies of Fe+H2)1-6 clusters. J. Phys.

Chem. 1995, 99, 15602-15607.

Bowers, M.T.; Kemper, P.R.; van Koppen, P.; Wyttenbach, T.; Carpenter, C.J.; Weis, P.; Gidden, J. Energetics and structures of gas phase ions: macromolecules, clusters and ligated transition metals. In: Minas de Piedade M.E, editor. Energetics of stable molecules and reactive intermediates. Dordrect: Kluwer. 1999, p 235-258.

Hoyau, S.; Norrman, K.; McMahon, T.B.; Ohanessian, G. A quantitative basis for a scale of Na+ affinities of organic and small biological molecules in the gas phase. J. Am. Chem.

Soc. 1999, 121, 8864-8875.

Armentrout P.B. Thermochemical measurements by guided ion beam mass spectrometry. In: Adams N.G. Babcock L.M., editors. Advances in gas phase ion chemistry. Vol. 1. Greenwich:JAI. 1992, p 83-119.

Armentrout, P.B.; Clemmer, D.E. Guided ion beam studies of the enretics of organometallic species. In: Siomes JAM, editor. Energetics of organometallic species. Dordrect: Kluwer. 1992, p 321-356.

Armentrout, P.B. Guided ion beam studies of transition metal-ligand thermochemistry. Int. J. Mass Spectrom. 2003, 227, 289-302.

Rodger, M.T.; Armentrout, P.B. Noncovalent metal-ligand bond energies as studied by threshold collision-induced dissociation. Mass Spectrom. Rev. 2000, 19, 215-247.

Taft, R.W.; Anvia, F.; Gal, J.F.; Walsh, S.; Capon, M.; Holmes, M.C.; Hosn, K.; Oloumi, G.; Vasamwala, R.; Yazdani, S.; Free energies of cation-molecule complex formation and

of cation-solvent transfers. Pure Appl. Chem. 1990, 62, 17-23.

Woodin, R.L.; Beauchamp, J.L. Binding of Li+ to Lewis bases in the gas phase. Reversals in methyl substituent effects for different reference acids. J. Am. Chem. Soc. 1978, 100,

-508.

Cook, R.G.; Koskinen, JT.; Thomas, P.D. The kinetic method of making thermochemical determination. J. Mass Spectrom. 1999, 34, 85-92.

Cook, R.G.; Wong, P.S.H. The kinetic method of making thermochemical determination: advances and applications. Acc. Chem. Res. 1999, 31, 379-386.

Armentrout, P.B. Is it the kinetic method a thermodynamic method? J. Mass Spectrom. 1999, 34, 74-78.

Armentrout, P.B. Entropy measurements and the kinetic method: s statistically meaningful approach. J. Am. Soc. Mass Spectrom. 2000, 11, 371-379.

Nesatyy, V.J. Gas-phase binding of non-covalent protein complexes between bovine pancreatic trypsin inhibitor and its target enzymes studied by electrospray ionization tandem

mass spectrometry. J. Mass Spectrom. 2001, 36, 950-959.

van der Kerk-van Hoof, A.; Heck, A.J.R. Covalent and non-covalent dissociations of gasphase complexes of avoparcin and bacterial receptor mimicking precursor peptides studied by collisionally activated decomposition mass spectrometry. J. Mass Spectrom. 1999, 34, 813-819.

Wang, K.X.; Gross, M.L.; Shibue, T. Gas-phase stability of double-stranded oligodeoxynucleotides and their noncovalent complexes with DNA-binding drugs as revealed by collisional activation in an ion trap. J. Am. Soc. Mass Spectrom. 2000, 11, 450-457.

Hart,K.J.; McLuckey, S.A. Relative dissociation energy measurements using I trap collisional activation. J. Am. Soc. Mass Spectrom. 1994, 5, 250-259.

Colorado, A.; Brodbelt, J. An empirical approach to estimation of critical energies by using a quadrupole ion trap. J. Am. Soc. Mass Spectrom. 1996, 7, 1116-1125.

Satterfield, M.; Brodbelt, J.S. Relative Binding Energies of Gas-Phase Pyridyl Ligand/Metal Complexes by Energy-Variable Collisionally Activated Dissociation in a Quadrupole Ion Trap. Inorg. Chem. 2001, 40, 5393-5400.

David, W.M.; Brodbelt, J.S. Threshold Dissociation Energies of Protonated Amine/Polyether Complexes in a Quadrupole Ion Trap. J. Am. Soc. Mass Spectrom. 2003, 14, 383-392.

Crowe, M.C.; Brodbelt, J.S. Evaluation of Noncovalent Interactions between Peptides and Polyether Compounds via Energy-Variable Collisionally Activated Dissociation. J. Am.

Soc. Mass Spectrom. 2003, 14, 1148-1157.

Hayes, L.A.; Chappell, A.M.; Jellen, E.E.; Ryzhov, V. Binding of metalloporphyrins tomodel nitrogen bases: Collision-induced dissociation and ion-molecule reaction studies. Int. J. Mass Spectrom. 2003, 227, 111-120.

Hsieh, Y. L.; Li, Y. T.; Henion, J. D.; Ganem, B. Studies of non-covalent interactions of actinomycin D with singlestranded oligodeoxynucleotides by ion spray mass spectrometry and tandem mass spectrometry. Biol. Mass Spectrom. 1994, 23, 272-276.

Shvartsburg, A.A.; Siu, K.W.M. Is there a minimum size for aqueous doubly charged metal cations? J. Am. Chem. Soc. 2001, 123, 10071-10075.

Jorgensen, C.K.; Pappalardo, R.; Schmidtke, H.H. J. Chem. Phys. 1963, 39, 1422

Combariza, M.Y.; Vachet, R.W. Efect of coordination geometry on the gas-phase reactivity of four-coordinate divalent metal ion complexes. J. Phys. Chem. A. 2004, 108, 1757-1763.




DOI: https://doi.org/10.24054/01204211.v1.n1.2005.58

Enlaces refback

  • No hay ningún enlace refback.