INTRODUCCIÓN AL USO DE COAGULANTES NATURALES EN LOS PROCESOS DE POTABILIZACIÓN DEL AGUA

Angie Ortega Ramírez, Luis Cáceres Durán, Laura Castiblanco Molina

Resumen


El acceso al recurso hídrico es una de las necesidades básicas para la supervivencia de los seres humanos y animales, por ende, es necesario buscar estrategias y procesos que mejoren la calidad del agua potable, basada en procesos sustentables, amigables con el medio ambiente y seguro para el consumo humano. Por tanto, el presente artículo realiza una revisión detallada del uso de coagulantes naturales en el tratamiento de agua potable con el propósito de reemplazar los coagulantes químicos, mediante el uso de base de datos académicas y científicas, se encuentra que los aglomerantes son a base de bacterias, animales y plantas como la Opuntia Ficus Indica, y entre otros coagulantes que son viables para presentarse como alternativas naturales en el proceso de coagulación para la potabilización del recurso hídrico.


Texto completo:

PDF

Referencias


Abu Hasan, H., Muhammad, M. H., & Ismail, N. ’Izzati. (2020). A review of biological drinking water treatment technologies for contaminants removal from polluted water resources. Journal of Water Process Engineering, 33, 101035. https://doi.org/10.1016/j.jwpe.2019.101035

Ahmadi, N., Chaibakhsh, N., & Zanjanchi, M. A. (2016). Use of D escurainia sophia L. As a natural coagulant for the treatment of dye-containing wastewater. Environmental Progress & Sustainable Energy, 35(4), 996-1001. https://doi.org/10.1002/ep.12311

Ang, W. L., & Mohammad, A. W. (2019). Integrated and hybrid process technology. En Sustainable Water and Wastewater Processing (pp. 279-328). Elsevier. https://doi.org/10.1016/B978-0-12-816170-8.00009-0

Ang, W. L., & Mohammad, A. W. (2020). State of the art and sustainability of natural coagulants in water and wastewater treatment. Journal of Cleaner Production, 121267. https://doi.org/10.1016/j.jclepro.2020.121267

Asrafuzzaman, Md., Fakhruddin, A. N. M., & Hossain, Md. A. (2011). Reduction of Turbidity of Water Using Locally Available Natural Coagulants. ISRN Microbiology, 2011, 1-6. https://doi.org/10.5402/2011/632189

Bolto, B., & Gregory, J. (2007). Organic polyelectrolytes in water treatment. Water Research, 41(11), 2301-2324. https://doi.org/10.1016/j.watres.2007.03.012

Choy, S. Y., Prasad, K. M. N., Wu, T. Y., & Ramanan, R. N. (2015). A review on common vegetables and legumes as promising plant-based natural coagulants in water clarification. International Journal of Environmental Science and Technology, 12(1), 367-390. https://doi.org/10.1007/s13762-013-0446-2

Choy, Sook Yan, Prasad, K. M. N., Wu, T. Y., Raghunandan, M. E., & Ramanan, R. N. (2014). Utilization of plant-based natural coagulants as future alternatives towards sustainable water clarification. Journal of Environmental Sciences, 26(11), 2178-2189. https://doi.org/10.1016/j.jes.2014.09.024

Choy, Sook Yan, Prasad, K. N., Wu, T. Y., Raghunandan, M. E., & Ramanan, R. N. (2016). Performance of conventional starches as natural coagulants for turbidity removal. Ecological Engineering, 94, 352-364. https://doi.org/10.1016/j.ecoleng.2016.05.082

Damkjaer, S., & Taylor, R. (2017). The measurement of water scarcity: Defining a meaningful indicator. Ambio, 46(5), 513-531. https://doi.org/10.1007/s13280-017-0912-z

Durai, R., Rajalakshmi, G., Joseph, J., Kanchalochana, S., & Hari, V. (2012). Tamarind seed polysaccharide: A promising natural excipient for pharmaceuticals. International Journal of Green Pharmacy, 6(4), 270. https://doi.org/10.4103/0973-8258.108205

Fawell, J., & Nieuwenhuijsen, M. J. (2003). Contaminants in drinking water. British Medical Bulletin, 68(1), 199-208. https://doi.org/10.1093/bmb/ldg027

Food and Agriculture Organization of the United Nations. (2013). Afrontar la escasez de agua: Un marco de acción para la agricultura y la qeguridad alimentaria. http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=3239163

Freitas, T. K. F. S., Almeida, C. A., Manholer, D. D., Geraldino, H. C. L., de Souza, M. T. F., & Garcia, J. C. (2018). Review of Utilization Plant-Based Coagulants as Alternatives to Textile Wastewater Treatment. En S. S. Muthu (Ed.), Detox Fashion (pp. 27-79). Springer Singapore. https://doi.org/10.1007/978-981-10-4780-0_2

Gerba, Charles P. (2009). Drinking Water Treatment. En Environmental Microbiology (pp. 531-538). Elsevier. https://doi.org/10.1016/B978-0-12-370519-8.00025-0

Gerba, C.P., & Pepper, I. L. (2019). Drinking Water Treatment. En Environmental and Pollution Science (pp. 435-454). Elsevier. https://doi.org/10.1016/B978-0-12-814719-1.00024-0

Graham, N., Gang, F., Fowler, G., & Watts, M. (2008). Characterisation and coagulation performance of a tannin-based cationic polymer: A preliminary assessment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 327(1-3), 9-16. https://doi.org/10.1016/j.colsurfa.2008.05.045

Hoa, N. T., & Hue, C. T. (2018). Enhanced water treatment by Moringa oleifera seeds extract as the bio-coagulant: Role of the extraction method. Journal of Water Supply: Research and Technology-Aqua. https://doi.org/10.2166/aqua.2018.070

Hoslett, J., Massara, T. M., Malamis, S., Ahmad, D., van den Boogaert, I., Katsou, E., Ahmad, B., Ghazal, H., Simons, S., Wrobel, L., & Jouhara, H. (2018). Surface water filtration using granular media and membranes: A review. Science of The Total Environment, 639, 1268-1282. https://doi.org/10.1016/j.scitotenv.2018.05.247

Hu, J., Chu, W., Sui, M., Xu, B., Gao, N., & Ding, S. (2018). Comparison of drinking water treatment processes combinations for the minimization of subsequent disinfection by-products formation during chlorination and chloramination. Chemical Engineering Journal, 335, 352-361. https://doi.org/10.1016/j.cej.2017.10.144

Jiang, J.-Q. (2015). The role of coagulation in water treatment. Current Opinion in Chemical Engineering, 8, 36-44. https://doi.org/10.1016/j.coche.2015.01.008

Kass, A., Gavrieli, I., Yechieli, Y., Vengosh, A., & Starinsky, A. (2005). The impact of freshwater and wastewater irrigation on the chemistry of shallow groundwater: A case study from the Israeli Coastal Aquifer. Journal of Hydrology, 300(1-4), 314-331. https://doi.org/10.1016/j.jhydrol.2004.06.013

Lozano-Rivas, W. A., & Lozano Bravo, G. (2015). Potabilización del agua principios de diseño, control de proceses y laboratorio. Universidad Piloto de Colombia. http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1593375

Ma, J., Fu, K., Fu, X., Guan, Q., Ding, L., Shi, J., Zhu, G., Zhang, X., Zhang, S., & Jiang, L. (2017). Flocculation properties and kinetic investigation of polyacrylamide with different cationic monomer content for high turbid water purification. Separation and Purification Technology, 182, 134-143. https://doi.org/10.1016/j.seppur.2017.03.048

Maier, R. M., Pepper, I. L., & Gerba, C. P. (Eds.). (2009). Environmental microbiology (2nd ed). Elsevier/Academic Press.

Nath, A., Mishra, A., & Pande, P. P. (2020). A review natural polymeric coagulants in wastewater treatment. Materials Today: Proceedings, S2214785320323324. https://doi.org/10.1016/j.matpr.2020.03.551

Nayak, A. K., Bera, H., Hasnain, M. S., & Pal, D. (2018). Synthesis and Characterization of Graft Copolymers of Plant Polysaccharides. En Biopolymer Grafting: Synthesis and Properties (pp. 1-62). Elsevier. https://doi.org/10.1016/B978-0-323-48104-5.00001-9

Odlare, M. (2014). Introductory Chapter for Water Resources. En Reference Module in Earth Systems and Environmental Sciences (p. B9780124095489090000). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.09035-7

Oladoja, N. A. (2015). Headway on natural polymeric coagulants in water and wastewater treatment operations. Journal of Water Process Engineering, 6, 174-192. https://doi.org/10.1016/j.jwpe.2015.04.004

Pandey, V. S., Verma, S. K., Yadav, M., & Behari, K. (2014). Guar gum-g-N,N′-dimethylacrylamide: Synthesis, characterization and applications. Carbohydrate Polymers, 99, 284-290. https://doi.org/10.1016/j.carbpol.2013.08.024

Prabhakaran, G., Manikandan, M., & Boopathi, M. (2020). Treatment of textile effluents by using natural coagulants. Materials Today: Proceedings, S2214785320318034. https://doi.org/10.1016/j.matpr.2020.03.029

Priya, T., Mishra, B. K., & Prasad, M. N. V. (2020). Physico-chemical techniques for the removal of disinfection by-products precursors from water. En Disinfection By-products in Drinking Water (pp. 23-58). Elsevier. https://doi.org/10.1016/B978-0-08-102977-0.00002-0

Renault, F., Sancey, B., Badot, P.-M., & Crini, G. (2009). Chitosan for coagulation/flocculation processes – An eco-friendly approach. European Polymer Journal, 45(5), 1337-1348. https://doi.org/10.1016/j.eurpolymj.2008.12.027

Saleem, M., & Bachmann, R. T. (2019). A contemporary review on plant-based coagulants for applications in water treatment. Journal of Industrial and Engineering Chemistry, 72, 281-297. https://doi.org/10.1016/j.jiec.2018.12.029

Saritha, V., Karnena, M. K., & Dwarapureddi, B. K. (2019). “Exploring natural coagulants as impending alternatives towards sustainable water clarification” – A comparative studies of natural coagulants with alum. Journal of Water Process Engineering, 32, 100982. https://doi.org/10.1016/j.jwpe.2019.100982

Schutte, F., South Africa, & Water Research Commission. (2006). Handbook for the operation of water treatment works. Water Research Commission.

Sharma, S., & Bhattacharya, A. (2017). Drinking water contamination and treatment techniques. Applied Water Science, 7(3), 1043-1067. https://doi.org/10.1007/s13201-016-0455-7

Sillanpää, M., Ncibi, M. C., Matilainen, A., & Vepsäläinen, M. (2018). Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review. Chemosphere, 190, 54-71. https://doi.org/10.1016/j.chemosphere.2017.09.113

Srivastav, A. L., & Kaur, T. (2020a). Factors affecting the formation of disinfection by-products in drinking water: Human health risk. En Disinfection By-products in Drinking Water (pp. 433-450). Elsevier. https://doi.org/10.1016/B978-0-08-102977-0.00019-6

Srivastav, A. L., & Kaur, T. (2020b). Factors affecting the formation of disinfection by-products in drinking water: Abu Hasan, H., Muhammad, M. H., & Ismail, N. ’Izzati. (2020). A review of biological drinking water treatment technologies for contaminants removal from polluted water resources. Journal of Water Process Engineering, 33, 101035. https://doi.org/10.1016/j.jwpe.2019.101035

Ahmadi, N., Chaibakhsh, N., & Zanjanchi, M. A. (2016). Use of D escurainia sophia L. As a natural coagulant for the treatment of dye-containing wastewater. Environmental Progress & Sustainable Energy, 35(4), 996-1001. https://doi.org/10.1002/ep.12311

Ang, W. L., & Mohammad, A. W. (2019). Integrated and hybrid process technology. En Sustainable Water and Wastewater Processing (pp. 279-328). Elsevier. https://doi.org/10.1016/B978-0-12-816170-8.00009-0

Ang, W. L., & Mohammad, A. W. (2020). State of the art and sustainability of natural coagulants in water and wastewater treatment. Journal of Cleaner Production, 121267. https://doi.org/10.1016/j.jclepro.2020.121267

Asrafuzzaman, Md., Fakhruddin, A. N. M., & Hossain, Md. A. (2011). Reduction of Turbidity of Water Using Locally Available Natural Coagulants. ISRN Microbiology, 2011, 1-6. https://doi.org/10.5402/2011/632189

Bolto, B., & Gregory, J. (2007). Organic polyelectrolytes in water treatment. Water Research, 41(11), 2301-2324. https://doi.org/10.1016/j.watres.2007.03.012

Choy, S. Y., Prasad, K. M. N., Wu, T. Y., & Ramanan, R. N. (2015). A review on common vegetables and legumes as promising plant-based natural coagulants in water clarification. International Journal of Environmental Science and Technology, 12(1), 367-390. https://doi.org/10.1007/s13762-013-0446-2

Choy, Sook Yan, Prasad, K. M. N., Wu, T. Y., Raghunandan, M. E., & Ramanan, R. N. (2014). Utilization of plant-based natural coagulants as future alternatives towards sustainable water clarification. Journal of Environmental Sciences, 26(11), 2178-2189. https://doi.org/10.1016/j.jes.2014.09.024

Choy, Sook Yan, Prasad, K. N., Wu, T. Y., Raghunandan, M. E., & Ramanan, R. N. (2016). Performance of conventional starches as natural coagulants for turbidity removal. Ecological Engineering, 94, 352-364. https://doi.org/10.1016/j.ecoleng.2016.05.082

Damkjaer, S., & Taylor, R. (2017). The measurement of water scarcity: Defining a meaningful indicator. Ambio, 46(5), 513-531. https://doi.org/10.1007/s13280-017-0912-z

Durai, R., Rajalakshmi, G., Joseph, J., Kanchalochana, S., & Hari, V. (2012). Tamarind seed polysaccharide: A promising natural excipient for pharmaceuticals. International Journal of Green Pharmacy, 6(4), 270. https://doi.org/10.4103/0973-8258.108205

Fawell, J., & Nieuwenhuijsen, M. J. (2003). Contaminants in drinking water. British Medical Bulletin, 68(1), 199-208. https://doi.org/10.1093/bmb/ldg027

Food and Agriculture Organization of the United Nations. (2013). Afrontar la escasez de agua: Un marco de acción para la agricultura y la qeguridad alimentaria. http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=3239163

Freitas, T. K. F. S., Almeida, C. A., Manholer, D. D., Geraldino, H. C. L., de Souza, M. T. F., & Garcia, J. C. (2018). Review of Utilization Plant-Based Coagulants as Alternatives to Textile Wastewater Treatment. En S. S. Muthu (Ed.), Detox Fashion (pp. 27-79). Springer Singapore. https://doi.org/10.1007/978-981-10-4780-0_2

Gerba, Charles P. (2009). Drinking Water Treatment. En Environmental Microbiology (pp. 531-538). Elsevier. https://doi.org/10.1016/B978-0-12-370519-8.00025-0

Gerba, C.P., & Pepper, I. L. (2019). Drinking Water Treatment. En Environmental and Pollution Science (pp. 435-454). Elsevier. https://doi.org/10.1016/B978-0-12-814719-1.00024-0

Graham, N., Gang, F., Fowler, G., & Watts, M. (2008). Characterisation and coagulation performance of a tannin-based cationic polymer: A preliminary assessment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 327(1-3), 9-16. https://doi.org/10.1016/j.colsurfa.2008.05.045

Hoa, N. T., & Hue, C. T. (2018). Enhanced water treatment by Moringa oleifera seeds extract as the bio-coagulant: Role of the extraction method. Journal of Water Supply: Research and Technology-Aqua. https://doi.org/10.2166/aqua.2018.070

Hoslett, J., Massara, T. M., Malamis, S., Ahmad, D., van den Boogaert, I., Katsou, E., Ahmad, B., Ghazal, H., Simons, S., Wrobel, L., & Jouhara, H. (2018). Surface water filtration using granular media and membranes: A review. Science of The Total Environment, 639, 1268-1282. https://doi.org/10.1016/j.scitotenv.2018.05.247

Hu, J., Chu, W., Sui, M., Xu, B., Gao, N., & Ding, S. (2018). Comparison of drinking water treatment processes combinations for the minimization of subsequent disinfection by-products formation during chlorination and chloramination. Chemical Engineering Journal, 335, 352-361. https://doi.org/10.1016/j.cej.2017.10.144

Jiang, J.-Q. (2015). The role of coagulation in water treatment. Current Opinion in Chemical Engineering, 8, 36-44. https://doi.org/10.1016/j.coche.2015.01.008

Kass, A., Gavrieli, I., Yechieli, Y., Vengosh, A., & Starinsky, A. (2005). The impact of freshwater and wastewater irrigation on the chemistry of shallow groundwater: A case study from the Israeli Coastal Aquifer. Journal of Hydrology, 300(1-4), 314-331. https://doi.org/10.1016/j.jhydrol.2004.06.013

Lozano-Rivas, W. A., & Lozano Bravo, G. (2015). Potabilización del agua principios de diseño, control de proceses y laboratorio. Universidad Piloto de Colombia. http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1593375

Ma, J., Fu, K., Fu, X., Guan, Q., Ding, L., Shi, J., Zhu, G., Zhang, X., Zhang, S., & Jiang, L. (2017). Flocculation properties and kinetic investigation of polyacrylamide with different cationic monomer content for high turbid water purification. Separation and Purification Technology, 182, 134-143. https://doi.org/10.1016/j.seppur.2017.03.048

Maier, R. M., Pepper, I. L., & Gerba, C. P. (Eds.). (2009). Environmental microbiology (2nd ed). Elsevier/Academic Press.

Nath, A., Mishra, A., & Pande, P. P. (2020). A review natural polymeric coagulants in wastewater treatment. Materials Today: Proceedings, S2214785320323324. https://doi.org/10.1016/j.matpr.2020.03.551

Nayak, A. K., Bera, H., Hasnain, M. S., & Pal, D. (2018). Synthesis and Characterization of Graft Copolymers of Plant Polysaccharides. En Biopolymer Grafting: Synthesis and Properties (pp. 1-62). Elsevier. https://doi.org/10.1016/B978-0-323-48104-5.00001-9

Odlare, M. (2014). Introductory Chapter for Water Resources. En Reference Module in Earth Systems and Environmental Sciences (p. B9780124095489090000). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.09035-7

Oladoja, N. A. (2015). Headway on natural polymeric coagulants in water and wastewater treatment operations. Journal of Water Process Engineering, 6, 174-192. https://doi.org/10.1016/j.jwpe.2015.04.004

Pandey, V. S., Verma, S. K., Yadav, M., & Behari, K. (2014). Guar gum-g-N,N′-dimethylacrylamide: Synthesis, characterization and applications. Carbohydrate Polymers, 99, 284-290. https://doi.org/10.1016/j.carbpol.2013.08.024

Prabhakaran, G., Manikandan, M., & Boopathi, M. (2020). Treatment of textile effluents by using natural coagulants. Materials Today: Proceedings, S2214785320318034. https://doi.org/10.1016/j.matpr.2020.03.029

Priya, T., Mishra, B. K., & Prasad, M. N. V. (2020). Physico-chemical techniques for the removal of disinfection by-products precursors from water. En Disinfection By-products in Drinking Water (pp. 23-58). Elsevier. https://doi.org/10.1016/B978-0-08-102977-0.00002-0

Renault, F., Sancey, B., Badot, P.-M., & Crini, G. (2009). Chitosan for coagulation/flocculation processes – An eco-friendly approach. European Polymer Journal, 45(5), 1337-1348. https://doi.org/10.1016/j.eurpolymj.2008.12.027

Saleem, M., & Bachmann, R. T. (2019). A contemporary review on plant-based coagulants for applications in water treatment. Journal of Industrial and Engineering Chemistry, 72, 281-297. https://doi.org/10.1016/j.jiec.2018.12.029

Saritha, V., Karnena, M. K., & Dwarapureddi, B. K. (2019). “Exploring natural coagulants as impending alternatives towards sustainable water clarification” – A comparative studies of natural coagulants with alum. Journal of Water Process Engineering, 32, 100982. https://doi.org/10.1016/j.jwpe.2019.100982

Schutte, F., South Africa, & Water Research Commission. (2006). Handbook for the operation of water treatment works. Water Research Commission.

Sharma, S., & Bhattacharya, A. (2017). Drinking water contamination and treatment techniques. Applied Water Science, 7(3), 1043-1067. https://doi.org/10.1007/s13201-016-0455-7

Sillanpää, M., Ncibi, M. C., Matilainen, A., & Vepsäläinen, M. (2018). Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review. Chemosphere, 190, 54-71. https://doi.org/10.1016/j.chemosphere.2017.09.113

Srivastav, A. L., & Kaur, T. (2020a). Factors affecting the formation of disinfection by-products in drinking water: Human health risk. En Disinfection By-products in Drinking Water (pp. 433-450). Elsevier. https://doi.org/10.1016/B978-0-08-102977-0.00019-6

Srivastav, A. L., & Kaur, T. (2020b). Factors affecting the formation of disinfection by-products in drinking water: Human health risk. En Disinfection By-products in Drinking Water (pp. 433-450). Elsevier. https://doi.org/10.1016/B978-0-08-102977-0.00019-6

Taiwo, A. S., Adenike, K., & Aderonke, O. (2020). Efficacy of a natural coagulant protein from Moringa oleifera (Lam) seeds in treatment of Opa reservoir water, Ile-Ife, Nigeria. Heliyon, 6(1), e03335. https://doi.org/10.1016/j.heliyon.2020.e03335

Tang, Y., Long, X., Wu, M., Yang, S., Gao, N., Xu, B., & Dutta, S. (2020). Bibliometric review of research trends on disinfection by-products in drinking water during 1975–2018. Separation and Purification Technology, 241, 116741. https://doi.org/10.1016/j.seppur.2020.116741

Tejado Gallegos, M., & Olmos Pérez, A. (2014). El derecho humano al agua potable y saneamiento.

Una Ryan: On the Importance of Clean Potable Water. (2017). Trends in Parasitology, 33(7), 489-490. https://doi.org/10.1016/j.pt.2017.03.007

United Nations Educational, Scientific and Cultural Organization. (2019a). Informe Mundial de Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2019: No dejar a nadie atrás. UN. https://doi.org/10.18356/e96937a1-es

United Nations Educational, Scientific and Cultural Organization. (2019b). Informe Mundial de Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2019: No dejar a nadie atrás. UN. https://doi.org/10.18356/e96937a1-es

World Health Organization. Water, S. and H. T. (2000). WHO guidelines for drinking water quality: Training pack. WHO Seminar Pack for Drinking-Water Quality. WHO IRIS. https://apps.who.int/iris/handle/10665/66218

Xia, X., Lan, S., Li, X., Xie, Y., Liang, Y., Yan, P., Chen, Z., & Xing, Y. (2018). Characterization and coagulation-flocculation performance of a composite flocculant in high-turbidity drinking water treatment. Chemosphere, 206, 701-708. https://doi.org/10.1016/j.chemosphere.2018.04.159




DOI: https://doi.org/10.24054/19009178.v2.n2.2020.4444

Enlaces refback

  • No hay ningún enlace refback.


Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.