PROCESAMIENTO DIGITAL DE IMÁGENES DE SENSORES REMOTOS PARA APLICACIONES DE AGRICULTURA DE PRECISIÓN

Andrés Fernando Jiménez López, Fabián Rolando Jiménez López, Elkyn Fagua Pérez

Resumen


Este trabajo presenta un avance en los resultados de las investigaciones que ha realizado la UPTC buscando establecer modelos espaciales del comportamiento de variables fenológicas de las regiones cultivables de los municipios de: Paipa, Duitama, Nobsa, Tibasosa y Sogamoso del departamento de Boyacá, mediante el uso del procesamiento digital de imágenes adquiridas por sensores remotos satelitales y de laboratorio. El algoritmo desarrollado, relaciona la información espectral adquirida del sensor MODIS (Moderate Resolution Imaging Spectroradiometer) y de un sistema de adquisición de imágenes espectrales en tierra, con el comportamiento fenológico de
plantas enfermas y sanas


Texto completo:

ART 3

Referencias


Bryant, B. & Moran, M. (1999).Determining crop

water stress from crop temperature variability.

Proceedings of the Fourth International

Airborne Remote Sensing Conference and

Exhibition/21st Canadian Symposium on

Remote Sensing, Ottawa, Canada, pp. 289–296.

Qin Z,. Zhang M. (2005). Detection of rice sheath

blight for in-season disease management using

multispectral remote sensing. International

Journal of Applied Earth Observation and

Geoinformation 7 115–128.

Foody, G. (2003).Remote sensing of tropical forest

environments: towards the monitoring of

environmental resources for sustainable

development. International Journal of Remote

Sensing, 24, pp. 4035–4046.

Houborg, R., Soegaard, H., Boegh, E. (2007).

Combining vegetation index and model

inversion methods for the extraction of key

vegetation biophysical parameters using Terra

and Aqua MODIS reflectance data. Science

Direct. Remote Sensing of Environment 106

pp.39-58.

Dengsheng, L.(2006). The potential and challenge

of remote sensing-based biomass estimation.

International Journal of Remote Sensing,

Volume 27, Issue 7, pages 1297 – 1328.

Zhan Y., Huang J., Tao R. (2008). Characterizing

and Estimating Fungal Disease Severity of Rice

Brown Spot with Hyperspectral Reflectance

Data. LIU Rice Science,15(3): 232–242.

Ross, J. (19819.The Radiation Regime and

Architecture of Plants Stands. Dr W. Junk

Publishers, London.

Meer, F. & Jong, S. (2002). Imaging Spectrometry.

Remote Sensing and Digital Image Processing.

Kluwe Academic Publishers. Vol. 4.: 111-197.

Sanger J. E. (1971). Quantitative investigation of

leaf pigments from their inception in buds

through autumn coloration to decomposition in

falling leaves. Ecology, Vol. 52, pp. 1075-1089.

Chuvieco, E. (2002). Teledetección Ambiental,

Ariel Ciencia, 128 pp.

Lu, D.; Batistella, M.& Moran, E. (2005).Satellite

estimation of aboveground biomass and

impacts of forest stand structure.

Photogrammetric Engineering and Remote

Sensing, 71, pp. 967–974.

Zulhaidi, H. (2009). Hyperspectral Imagery for

Mapping Disease Infection in Oil Palm

Plantation Using Vegetation Indices and Red

Edge Techniques. American Journal of Applied

Sciences 6 (6): 1031-1035.

Jiménez, A.F & Jimenez F. R. (2012). Temperature

telemetry system for agricultural crops using

free software, in Proc. of the 6th Euro

American Conference on Telematics and

Information Systems. Universidad de Valencia,

España. Vol. 1, No. 1, pp. 89 – 94.

Jiménez, A.F &Jiménez F. R. (2012). Field

variables monitoring in real time (GPS, soil

moisture, temperature) with precision farming

applications. In Proc. of the 6th Euro American

Conference on Telematics and Information

Systems. Universidad de Valencia, España.

Vol. 1, No. 1, pp. 367–370.




DOI: https://doi.org/10.24054/16927257.v21.n21.2013.291

Enlaces refback

  • No hay ningún enlace refback.