PROCESAMIENTO DIGITAL DE IMÁGENES DE SENSORES REMOTOS PARA APLICACIONES DE AGRICULTURA DE PRECISIÓN
Resumen
Este trabajo presenta un avance en los resultados de las investigaciones que ha realizado la UPTC buscando establecer modelos espaciales del comportamiento de variables fenológicas de las regiones cultivables de los municipios de: Paipa, Duitama, Nobsa, Tibasosa y Sogamoso del departamento de Boyacá, mediante el uso del procesamiento digital de imágenes adquiridas por sensores remotos satelitales y de laboratorio. El algoritmo desarrollado, relaciona la información espectral adquirida del sensor MODIS (Moderate Resolution Imaging Spectroradiometer) y de un sistema de adquisición de imágenes espectrales en tierra, con el comportamiento fenológico de
plantas enfermas y sanas
Texto completo:
ART 3Referencias
Bryant, B. & Moran, M. (1999).Determining crop
water stress from crop temperature variability.
Proceedings of the Fourth International
Airborne Remote Sensing Conference and
Exhibition/21st Canadian Symposium on
Remote Sensing, Ottawa, Canada, pp. 289–296.
Qin Z,. Zhang M. (2005). Detection of rice sheath
blight for in-season disease management using
multispectral remote sensing. International
Journal of Applied Earth Observation and
Geoinformation 7 115–128.
Foody, G. (2003).Remote sensing of tropical forest
environments: towards the monitoring of
environmental resources for sustainable
development. International Journal of Remote
Sensing, 24, pp. 4035–4046.
Houborg, R., Soegaard, H., Boegh, E. (2007).
Combining vegetation index and model
inversion methods for the extraction of key
vegetation biophysical parameters using Terra
and Aqua MODIS reflectance data. Science
Direct. Remote Sensing of Environment 106
pp.39-58.
Dengsheng, L.(2006). The potential and challenge
of remote sensing-based biomass estimation.
International Journal of Remote Sensing,
Volume 27, Issue 7, pages 1297 – 1328.
Zhan Y., Huang J., Tao R. (2008). Characterizing
and Estimating Fungal Disease Severity of Rice
Brown Spot with Hyperspectral Reflectance
Data. LIU Rice Science,15(3): 232–242.
Ross, J. (19819.The Radiation Regime and
Architecture of Plants Stands. Dr W. Junk
Publishers, London.
Meer, F. & Jong, S. (2002). Imaging Spectrometry.
Remote Sensing and Digital Image Processing.
Kluwe Academic Publishers. Vol. 4.: 111-197.
Sanger J. E. (1971). Quantitative investigation of
leaf pigments from their inception in buds
through autumn coloration to decomposition in
falling leaves. Ecology, Vol. 52, pp. 1075-1089.
Chuvieco, E. (2002). Teledetección Ambiental,
Ariel Ciencia, 128 pp.
Lu, D.; Batistella, M.& Moran, E. (2005).Satellite
estimation of aboveground biomass and
impacts of forest stand structure.
Photogrammetric Engineering and Remote
Sensing, 71, pp. 967–974.
Zulhaidi, H. (2009). Hyperspectral Imagery for
Mapping Disease Infection in Oil Palm
Plantation Using Vegetation Indices and Red
Edge Techniques. American Journal of Applied
Sciences 6 (6): 1031-1035.
Jiménez, A.F & Jimenez F. R. (2012). Temperature
telemetry system for agricultural crops using
free software, in Proc. of the 6th Euro
American Conference on Telematics and
Information Systems. Universidad de Valencia,
España. Vol. 1, No. 1, pp. 89 – 94.
Jiménez, A.F &Jiménez F. R. (2012). Field
variables monitoring in real time (GPS, soil
moisture, temperature) with precision farming
applications. In Proc. of the 6th Euro American
Conference on Telematics and Information
Systems. Universidad de Valencia, España.
Vol. 1, No. 1, pp. 367–370.
DOI: https://doi.org/10.24054/16927257.v21.n21.2013.291
Enlaces refback
- No hay ningún enlace refback.