DESEMPEÑO DE ALGORITMOS HEURÍSTICOS EN LA SOLUCIÓN DE PROBLEMAS CUADRÁTICOS NO CONVEXOS CON RESTRICCIONES DE CAJA
Resumen
Texto completo:
PDFReferencias
Horst, R., Pardalos, P. M., & Van Thoai, N. (2000). Introduction to global optimization. Springer Science & Business Media.
Iqbal, M. K., Nadeem, A., Sherazi, F., & Khan, R. A. (2015). Optimization of process parameters for kitchen waste composting by response surface methodology. International Journal of Environmental Science and Technology, 12(5), 1759-1768.
Izmailov, A. F., & Solodov, M. V. (2016). Some new facts about sequential quadratic programming methods employing second derivatives. Optimization Methods and Software, 31(6), 1111-1131. Recuperado deizmsol15SQP-modH.pdf.
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization (PSO). 1942-1948. Recuperado de http://www.cs.cmu.edu/~arielpro/15381f16/c_slides/781f16-26.pdf
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. science, 220(4598), 671-680.
Krumke, S. (1994). Eine modifizierte barriermethode fur konvexe quadratische optimierungsprobleme. Unpublished master’s thesis, University of Wurzburg, Germany. (Diplomthesis)
Kvasov, D. E., & Mukhametzhanov, M. S. (2018). Metaheuristic vs. Deterministic global optimization algorithms: The univariate case. Applied Mathematics and Computation, 318, 245-259.
Laguna, M. (2000). Global optimization and metaheuristics. Recuperado de https://pdfs.semanticscholar.org/d88b/17e53bcca18398cb9fb9d73da680d0ec26ab.pdf
Mezura-Montes, E., & Coello, C. A. C. (2011). Constraint-handling in nature-inspired numerical optimization: Past, present and future. Swarm and Evolutionary Computation, 1(4),173-194.
Miranda, R., Allende, S., Bouza, G., & Perez, B. (2015). Algoritmo de corte y continuación con ramificación y acotación para la solución del problema cuadrático con restricciones de caja. Revista Ciencias Matemáticas, 29, 1, 19-29.
Miranda, R. Alonso, S. A., Cañedo, B. P., & Allende, G. B. (2018). DESEMPEÑO COMPUTACIONAL DE ESTRATEGIAS HÍBRIDAS PARA LA SOLUCIÓN DE PROBLEMAS CUADRÁTICOS NO CONVEXOS CON RESTRICCIONES DE CAJA. Investigación Operacional, 39(1), 42-53.
Munapo, E., & Kumar, S. (2015). A New Heuristic for the Convex Quadratic Programming Problem. American Journal of Operations Research, 5(05), 373.
Otta, B. P. (2013). Numerical algorithms for quadratic programming for approximated predictive control. Recuperado de https://support.dce.felk.cvut.cz/mediawiki/images/6/63/Dp_2013_otta_pavel.pdf
Pedersen, M. E. H. (2010). Good parameters for particle swarm optimization. Hvass Lab., Copenhagen, Denmark, Tech. Rep. HL1001, 1551-3203.
Peltonen, T. (2015). Comparative study of population-based metaheuristic methods in global optimization. Recuperado de https://jyx.jyu.fi/bitstream/handle/123456789/46236/URN:NBN:fi:jyu-201506082229.pdf?sequence=1
Peng Hui Tan, Rasmussen, L. K., & Teng Joon Lim. (2000). Box-constrained maximum-likelihood detection in CDMA. 2000 International Zurich Seminar on Broadband Communications. Accessing, Transmission, Networking. Proceedings (Cat. No.00TH8475), 55-62. https://doi.org/10.1109/IZSBC.2000.829228
Peng Hui Tan, Rasmussen, L. K., & Lim, T. J. (2001). Constrained maximum-likelihood detection in CDMA. IEEE Transactions on Communications, 49(1), 142-153. https://doi.org/10.1109/26.898258
Schlüter, M., Egea, J. A., & Banga, J. R. (2009). Extended ant colony optimization for nonconvex mixed integer nonlinear programming. Computers & Operations Research, 36(7), 2217-2229.
Vavasis, S. A. (1990). Quadratic programming is inNP. Information Processing Letters, 36(2), 73-77.
DOI: https://doi.org/10.24054/16927257.v34.n34.2019.3866
Enlaces refback
- No hay ningún enlace refback.