INSPECCIÓN DE AISLADORES EN LÍNEAS DE TRANSMISIÓN ELÉCTRICA USANDO INTELIGENCIA ARTIFICIAL
Resumen
Texto completo:
PDFReferencias
B.D.Hammel. (2019). What learning rate should I use? B.D.Hammel. http://www.bdhammel.com/learning-rates/.
Berk, R., Heidari, H., Jabbari, S., Kearns, M., & Roth, A. (2017). Fairness in Criminal Justice Risk Assessments: The State of the Art. Sociological Methods and Research, 1–43. https://doi.org/10.1177/0049124118782533.
Chan, L., McGarey, P., & Sclafani, J. A. (2018). Chapter 20 - Using Large Data Sets for Population-Based Health Research (J. I. Gallin, F. P. Ognibene, & L. L. B. T.-P. and P. of C. R. (Fourth E. Johnson (eds.); pp. 293–302). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-849905-4.00020-4.
Dong, C., Loy, C. C., He, K., & Tang, X. (2016). Image Super-Resolution Using Deep Convolutional Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 295–307.
Han, D. (2013). Comparison of Commonly Used Image Interpolation Methods. Iccsee. https://doi.org/10.2991/iccsee.2013.391.
Han, J., Yang, Z., Zhang, Q., Chen, C., Li, H., Lai, S., Hu, G., Xu, C., Xu, H., Wang, D., & Chen, R. (2019). A method of insulator faults detection in aerial images for high-voltage transmission lines inspection. Applied Sciences (Switzerland), 9(10), 1–22. https://doi.org/10.3390/app9102009.
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. http://arxiv.org/abs/1704.04861.
Huang, R., Pedoeem, J., & Chen, C. (2019). YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU Computers. Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018, 2503–2510.
Ignatov, A., Timofte, R., Chou, W., Wang, K., Wu, M., Hartley, T., & Van Gool, L. (2019). AI Benchmark: Running deep neural networks on android smartphones. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11133 LNCS, 288–314. https://doi.org/10.1007/978-3-030-11021-5_19.
Kumar, R., & Indrayan, A. (2011). Receiver operating characteristic (ROC) curve for medical researchers. Indian Pediatrics, 48(4), 277–287.
Li, S., Zhou, H., Wang, G., Zhu, X., Kong, L., & Hu, Z. (2017). Cracked Insulator Detection Based on R-FCN. Journal of Physics: Conference Series, 1069(1). https://doi.org/10.1088/1742-6596/1069/1/012147.
Mark, E., Luc, V.-G., I, W. C. K., John., W., & Andrew, Z. (2010). The Pascal Visual Object Classes (VOC) Challenge. International Journal of Computer Vision, 88(2), 303–338.
Muschelli, J. (2019). ROC and AUC with a Binary Predictor: a Potentially Misleading Metric. Journal of Classification, 2020, 1–20. https://doi.org/10.1007/s00357-019-09345-1.
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, 779–788. https://doi.org/10.1109/CVPR.2016.91.
Pardo García A, Castellanos González L. (2017). Automatización de Ambientes en Invernaderos Simulando Escenarios Futuros, Rev. Col. Tec. De Avan., p.133-137.
Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., & Savarese, S. (2019). Generalized intersection over union: A metric and a loss for bounding box regression. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June, 658–666. https://doi.org/10.1109/CVPR.2019.00075.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., & Bernstein, M. (2014). Imagenet large scale visual recognition challenge. Int. J. Comput. Vis., 1–42.
Sabatelli, M., Kestemont, M., Daelemans, W., & Geurts, P. (2019). Deep transfer learning for art classification problems. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11130 LNCS(September), 631–646. https://doi.org/10.1007/978-3-030-11012-3_48.
Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 1–14.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07-12-June. https://doi.org/10.1109/CVPR.2015.7298594.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the Inception Architecture for Computer Vision. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, 2818–2826. https://doi.org/10.1109/CVPR.2016.308.
Tao, X., Zhang, D., Wang, Z., Liu, X., Zhang, H., & Xu, D. (2020). Detection of power line insulator defects using aerial images analyzed with convolutional neural networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(4), 1486–1498. https://doi.org/10.1109/TSMC.2018.2871750.
Tzutalin. (2015). LabelImg. Git Code LabelImg. ttps://github.com/tzutalin/labelImg.
Wei, J. (2019). Forget the learning rate, decay loss. International Journal of Machine Learning and Computing, 9(3), 267–272. https://doi.org/10.18178/ijmlc.2019.9.3.797.
Židek, K., & Hošovský, A. (2014). Image thresholding and contour detection with dynamic background selection for inspection tasks in machine vision. International Journal of Circuits, Systems and Signal Processing, 8, 545–554.
DOI: https://doi.org/10.24054/16927257.v36.n36.2020.4018
Enlaces refback
- No hay ningún enlace refback.