Condiciones de cultivo estándar relacionados con la producción de Astaxantina en Haematococcus pluvialis

Judith Elena Kurmen Camacho

Resumen


La astaxantina es un pigmento natural ampliamente distribuido en la naturaleza y de gran interés comercial como colorante y por sus diversas propiedades como pigmento y  bioactivas. El Haematococcus pluvialis es un alga verde que acumula carotenoides, principalmente astaxantina cuando es expuesto a condiciones de estrés. Sin embargo, en la literatura no se encuentran estudios sistemáticos que permitan determinar las condiciones de estrés que mejor favorezcan la acumulación de astaxantina para una producción industrial más rentable. Para tal fin se debe establecer inicialmente la línea base de comportamiento de H. pluviales a condiciones de cultivo estándar, propósito del presente trabajo mediante la revisión teórica de las diferentes condiciones de crecimiento de H. pluviales en los medios de cultivo reportados relacionados con la mayor producción de astaxantina, para lo cual se tienen en cuenta valores de  pH, temperatura, CO2, aireación, luz, ciclos luz/oscuridad, agitación, deficiencia de nitrógeno y fósforo.


Texto completo:

CONDICIONES DE CULTIVO

Referencias


Ambati R, Phang S, Ravi S and Aswathanarayana R. 2014.

Astaxanthin: Sources, Extraction, Stability,Biological Activities and Its Commercial Applications—A Review. Mar. Drugs. 2009 ,12: 128-152p,

Bosung Ku, Jeong J.C., Mijts B.N., Schmidt-Dannert C., and Dordick J.S..Preparation, Characterization, and Optimization of an In Vitro C30 Carotenoid Pathway. Applied and environmental microbiology 2005. Vol. 71 No 11. 6578–6583p.

Cifuentes Ana, González Mariela, Vargas Silvia, Hoeneisen Maritza y González Nelsón. Optimization of biomass, total carotenoids and astaxanthin production in Haematococcus pluvialis Flotow strain Steptoe (Nevada, USA) under laboratory conditions. Biol Res 36, 2003. 343-357p.

Domínguez-Bocanegra AR1, Guerrero Legarreta I, Martinez Jeronimo F, Tomasini Campocosio A.Influence of environmental and nutritional factors in the production of astaxanthin from Haematococcus pluvialis. Bioresources Technolofy,2004 Apr;92(2):209-14p.

Domínguez-Bocanegra R, Ponce-Noyola T, Torres-Muñoz J. Astaxanthin production by Phaffia rhodozyma and Haematococcus pluvialis: a comparative study Appl Microbiol Biotechnol. 2007; 75: 783-791.

Eonseon J., Gyun lee Ch., and Polle J.. Secondary Carotenoid Accumulation in Haematococcus (Chlorophyceae): Biosynthesis, Regulation, and Biotechnology. Journal of of Microbiology and Biotechnology. 2006. 16: 821–83p

Gómez L. Liliana, Menéndez Joaquin, Álvarez inaudis, Flores Ignacio. Efecto de diferentes protocolos de aplicación de un campo magnético (0.03T) sobre el crecimiento, viabilidad y composición pigmentaria de Haematococcus pluvialis Flotow en suficiencia y ausencia de nitrógeno. Biotecnología Vegetal , 2009. Vol. 9, No. 2: 105 – 117p.

Grünewald K.; Manfred E.;Hirschberg J Hage. C. Phytoene desaturase is localized exclusively in the Chloroplast and up-regulated and the mRNA level during accumulation of secondary carotenoids in Haematococcus pluvialis (Volvocales,Chlorophyciae). Plant Physiology.2000..Vol. 122.

Hanan N, Al-Shorgani N, Shukor H, Rahman N, KalilM.

Pre-Optimization Conditions for Haematococcus pluvialis Growth. International Journal on advanced sciences , engineering and information technology. 2013. 2: 70- 73p

Imamoğlu, Esra, Dalay Meltem Conk, Sukan Fazilet Vardar. Effect of different cultivation models on growth of Haematococcus pluvialis flotow, International journal of natural & engineering sciences, 2009, vol. 3 issue 2,10p.

Kang C,. Lee J, Park T,. Sim S. Complementary limiting factors of astaxanthin synthesis during photoautotrophic induction of Haematococcus pluvialis: C/N ratio and light intensity. Appl Microbiol Biotechnol. 2007; 74: 987-994.

Katsuda T.,Shimahara K.,Shiraishi H.,Yamagami K.,Ranbjar R.,Katoh S. Effect of flashing light from blue light emitting diodes on cell growth and Astaxanthin production of Haematococcus pluvialis. Journal of Bioscience and Bioengineering. 2006.Vol 102 No5.442-446p.

Lababpour A. Gyun Lee C. Simultaneous Measurements of Chlorophyll and Astaxanthin in Haematococcus pluvialis cells by first order derivative ultraviolet-visible Spectrophotometry. Journal of Bioscience and Bioengineering.2013. 101:104-110p

Labapour A. Shimahara K.Hada K. Kioui Y.Katsuda T.Katoh S.

Fed-batch culture under illumination with blue light emitting diodes (LEDS) for Astaxanthin production by Haematococcus pluvialis.Journal of Bioscience and Bioengineering. 2005. Vol 100 No3. 339-342p.

Li Li Xin, Song Zhi-wei, Zhan You, Duan Shun-shan Zhao Qian-shen y Liu Yan. Effect of Vitamin-B12 and Vitamin-H on the Growth and Astaxanthin Content of Haematococcus pluvialis CH-1 1. Advance Journal of Food Science and Technology , 2013.5(9): 1139-1142,

Meltem conk D., Imamoglu E., and Demirel Z. Agricultural fertilizers as economical alternative for cultivation of Haematococcus pluvialis.. J Microbiol. Biotechnol. 2007. Vol. 17(3). 393–397p.

Nunes, Moira, Vieira, Armando Augusto Henriques, Pinto, Ernani, Carneiro, Ronaldo Leal, & Monteiro, Antonio Carlos. Carotenogênese em células de Haematococcus pluvialis induzidas pelos estresses luminoso e nutricional. Pesquisa Agropecuária Brasileira, 2013. 48(8), 825-832p.

Rao R., Sarada A.R., Baskaran V., and Ravishankar G.A.. Identification of Carotenoids from Green Alga Haematococcus pluvialis by HPLC and LC-MS (APCI) and Their Antioxidant Properties. J. Microbiol. Biotechnol. 2009. Vol. 19(11). 1333–1341p.

Ramirez L. Daniel M. Evaluación del crecimiento y producción de astaxantina por Haematococcus pluvialis en un fotobiorreactor tipo airlift. Tesis de investigación. Universidad Nacional. 2013. 1-123p.

Ranbjar R. Inoue R.,Katsuda T.,Yamaji H.Katoh S. High efficiency production of Astaxanthin in an airlift photobioreactor. Journal of Bioscience and Bioengineering.2008. 2008.106: 204-207p

Sosa L. Antonieta E. Cultivo de la microalga Haematococcus pluvialis, en lote y fotobiorreactor para la produccion de carotenoides. Tesis. Universidad Autonoma Metropolitana, 2009. 1-40p.

Steinbremer J.; Linden H. Regulation of two carotenoid byosinthesis genes coding for phytoene synthase and carotenoid hidroxylase during stress-induced astaxanthin formation in the green alga. Haematococcus pluvialis. Plant Physiology , 2001.125, 810 – 817p.

Steinbrenner J. and Sandmann G.. Transformation of the Green Alga Haematococcus pluvialis with a Phytoene Desaturase for Accelerated Astaxanthin Biosynthesis. Applied and Environmental Microbiology. 2006. Vol. 72 No. 12. 7477–7484p.

Torzillo G., Tolga Göksan, Oya Isik and Gökpinar T.. Photon irradiance required to support optimal growth and interrelations between irradiance and pigment composition in the green alga Haematococcus pluvialis. Eur. J. Phycol.. 2005.Vol. 40(2). 233–240p.

Tran N.P., Park J K., Kim Z.H., and Gyun Lee Ch.. Influence of Sodium Orthovanadate on the Production of Astaxanthin from Green Algae Haematococcus lacustris Biotechnology and Bioprocess Engineering. 2009. Vol. 14. 322-329p.

Vidhyavathi Raman, Venkatachalam L., et al. Regulation of carotenoid byosinthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. Journal of Experimental Botany 59, 2008.1409-1418p.

Wang J, Sommerfeld M, Lu C and Hu Q. Combined effect of initial biomass density and nitrogen concentration on growth and astaxanthin production of Haematococcus pluvialis (Chlorophyta) in outdoor cultivation Algae 28, 2013. 193-202p.

Wang B.; Zarca A. Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyciae) as an active photoprotective process under high irradiance. Journal of Physiology.2003. Vol.39.1116-1124p.

Wang S.B. Milton M., Qiang Hu S. Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae). Planta. 2004. Vol. 220. 17–29p.

Yoshimura S.Ranbjar R.Inoue R.,Katsuda T.,Katoh S. Effective utilization of transmitted light for Astaxanthin production of Haematococcus pluvialis. Journal of Bioscience and Bioengineering. 2006. Vol 102 No2. 97-101p.




DOI: https://doi.org/10.24054/16927125.v1.n1.2016.2127

Enlaces refback

  • No hay ningún enlace refback.