Electromagnetic Fields (0.04 to 0.39) mT effect on cellular growth cycles of Saccharomyces cerevisiae wine strains

Eliseo Amado-González, Alveiro Álvarez Ovallos, Alfonso Quijano Parra

Resumen


Low frecuency electromagnetic fields effect (EMF) on growth cycles of yeast Saccharomyces cerevisiae wine strains Rv1 and Rhône were studied.  A cylindrical coil induced magnetic fields with inductions up to 0,39 mT. Exposure time to EMF varied between (1 – 10) min at 30 °C.  The biomass growth were monitored in the reactor culture media (yeast extract + by measurement optical density from (0 to 32) h. The biomass was found by dry weight. After yeast expose to the different EMF, the number of growth cycles decreased from 4 cycles to 2 or 1. However, the biomass production increased almost 50 %.  The best biomass production was found at 0.39 mT and 10 min exposure time.  

Keywords: Electromagnetic fields, Saccharomyces cerevisiae, biomass production, RV1

Texto completo:

PDF

Referencias


Amado-González, E., Villamizar, A., Gafaro A. 2005. Evaluation of the process of biodiesel production from yellow greases with high production from yellow greases with high free fatty acid. Bistua 3(1): 54-60. DOI.org/10.24054/01204211.v1.n1. 2005.59.

Álvarez-Ovallos, A., Amado-González, E., Quijano-Parra, A. 2014. Estudio del efecto de los campos electromagnéticos sobre la producción de biomasa en Saccharomyces cervisiae variedad Rhône. Bistua 12(2):14-23 doi.org/10.24054/ 01204211.v1.n1.2005.59.

Clavijo, A., Calderón, I.L., Paneque, P. 2010. Diversity of Saccharomyces and non-Saccharomyces yeasts in three red grape varieties cultured in the Serranía de Ronda (Spain) vine-growing region. International Journal of Food Microbiology. 143:241–245. DOI:10.1016/j.ijfoodmicro.2010.08.010.

Crouzier, D., Perrín, A., Torres, G., Dabouis, V., Debouzy, J. 2009. Pulsed electromagnetic field at 9.71 GHz increase free radical production in yeast (Saccharomyces cerevisiae). Pathologie Biologie 57: 245–251. doi.org/10.1016/j.patbio.2007.12.003.

Cucurachi, S., Tamis, W., Vijver, M., Peijnenburg, W., Bolte, J., de Snoo G. 2013. A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Env.International 51:116–140. doi.org/10.1016/ j.envint.2012. 10. 009.

Da-Motta, M. , Ferreira, J.B., Schuler, A. 2004. Static Magnetic Fields Enhancement of Saccharomyces cerevisae. Biotechnology Progress 20(2004) 393−396. doi.org/10.1021/bp034263j.

Deutmeyer, A., Raman, R., Murphy, P., Pandey, S. 2011. Effect of magnetic field on the fermentation kinetics of Saccharomyces cerevisiae. Advances in Bioscience and Biotechnology. 2:207-213. DOI: 10.4236/abb.2011.24031.

El-Zakhema, H., Lanoisellé, J., Lebovka, N., Nonus, M., Vorobiev, E. 2006. The early stages of Saccharomyces cerevisiae yeast suspensions damage in moderate pulsed electric fields. Colloids and Surfaces B: Biointerfaces. 47: 189–197. doi.org/10.1016/j.colsurfb.2005.12.010.

Fojt, L., Straṧák, L., Vetterl, V., Ṡmarda, J. Comparison of the low-frequency magnetic field effects on bacteria Escherichia coli, Leclercia adecarboxylata and Staphylococcus aureus. Bioelectrochemistry 63 (2004) 337– 341. doi.org/10.1016/j.bioelechem.2003.11.010.

Gos, P., Eicher, B., Kohli, J., Heyer, W. 2000. No mutagenic or recombinogenic effects of mobile phone fields at 900 MHz detected in the yeast Saccharomyces cerevisiae. Bioelectromagnetics 21(7):515–523. doi.org/10.1002/1521-186X(200010)21:7<515::AID-BEM5>3.0.CO;2-K.

Kovacs PE, Valentine RL, Álvarez PJ. (1997). The effect of static magnetic fields on biological systems: Implications for enhanced biodegradation. Critical reviews in environmental science and technology. 27 (1997) 319 – 382. doi.org/10.1080/10643389709388503.

Morata, A., Gómez-Cordovés, M.C., Calderón , F., Suárez. J.A. 2006. Effects of pH, temperature and SO2 on the formation of pyranoanthocyanins during red wine fermentation with two species of Saccharomyces. International Journal of Food Microbiology .106 ;123 – 129. DOI:10.1016/j.ijfoodmicro.2005.05.019.

Novák, J., Strašák, L., Fojt, L., Slaninova, I., Vetterl, V. 2007. Effects of low – frequency magnetic fields on the viability of yeast Saccharomyces cerevisisae. Bioelectrochemistry. 70:115–121. doi.org/10.1016/j.bioelechem.2006.03.029.

Loghavi, L., Sastry, K., Yousef, A. E. 2008. Effect of Moderate Electric Field Frequency on Growth Kinetics and Metabolic Activity of Lactobacillus acidophilus. Biotechnology Progress. 24;148-53. doi.org/10.1021/bp070268v.

Pankiewicz, U., Sujka, M., Włodarczyk-Stasiak, M., Mazek, A., Jamroz, J. Effect of pulse electric fields (PEF) on accumulation of magnesium and zinc ions in Saccharomyces cerevisiae cells. Food Chemistry. 157:125–131. doi.org/10.1016/j.foodchem.2014.02.028.

Ramírez AL, Gil J, Medina MH, Cruz B. (2016). Implementación en entorno Labview de un sistema multifuncional de medidas magnetoópticas y magnetoeléctricas para caracterización de materiales. BISTUA Revista de la Facultad de Ciencias Básicas, 14 (2): 116-125. doi: https://doi.org/10.24054/01204211.v2.n2.2016.2188.

Ruiz-Gómez, M. J., Prieto-Barcia, M.I., Ristori-Bogajo, Martínez-Morillo, M. 2004. Static and 50 Hz magnetic fields of 0.35 and 2.45 mT have no effect on the growth of Saccharomyces cerevisiae. Bioelectrochemistry. 64: 151 – 155. doi.org/10.1016/j.bioelechem.2004.04.003.

Sheehan, J., Himmel, M. 1999. Enzymes, energy, and the environment: Cellulose development in the emerging bioethanol industry. Biotechnology Progress. 15:817-827. DOI:10.1021/bp990110d.

Shu-Wei Zeng , Qi-Lin Huang , Si-Ming Zhao. 2014. Effects of microwave irradiation dose and time on Yeast ZSM-001 growth and cell membrane permeability. J.Food Control. 46:360-367doi.org/10.1016/j.foodcont.2014.05.053.

Valero, E., Moyano, L., Millan, M.C., Medina, M., Ortega, J.M. 2002. Higher alcohols and esters production by Saccharomyces crevisiae. Influence of the initial oxygenation of the grape must. Food Chemistry. 78:57– 61. doi.org/10.1016/S0308-8146(01)00361-2.

Zhang, X., Zhang, H., Zheng, C., Li, C., Zhang,X., Xiong, W. 2002. Extremely low frequency (elf) pulsed-gradient magnetic fields inhibit malignant tumor growth at different biological levels. Cell Biology International 26(7):599–603. doi.org/10.1006/cbir.2002.0883.




DOI: https://doi.org/10.24054/01204211.v2.n2.2019.3536

Enlaces refback

  • No hay ningún enlace refback.