Electromagnetic Fields (0.04 to 0.39) mT effect on cellular growth cycles of Saccharomyces cerevisiae wine strains
Resumen
Low frecuency electromagnetic fields effect (EMF) on growth cycles of yeast Saccharomyces cerevisiae wine strains Rv1 and Rhône were studied. A cylindrical coil induced magnetic fields with inductions up to 0,39 mT. Exposure time to EMF varied between (1 – 10) min at 30 °C. The biomass growth were monitored in the reactor culture media (yeast extract + by measurement optical density from (0 to 32) h. The biomass was found by dry weight. After yeast expose to the different EMF, the number of growth cycles decreased from 4 cycles to 2 or 1. However, the biomass production increased almost 50 %. The best biomass production was found at 0.39 mT and 10 min exposure time.
Keywords: Electromagnetic fields, Saccharomyces cerevisiae, biomass production, RV1Texto completo:
PDFReferencias
Amado-González, E., Villamizar, A., Gafaro A. 2005. Evaluation of the process of biodiesel production from yellow greases with high production from yellow greases with high free fatty acid. Bistua 3(1): 54-60. DOI.org/10.24054/01204211.v1.n1. 2005.59.
Álvarez-Ovallos, A., Amado-González, E., Quijano-Parra, A. 2014. Estudio del efecto de los campos electromagnéticos sobre la producción de biomasa en Saccharomyces cervisiae variedad Rhône. Bistua 12(2):14-23 doi.org/10.24054/ 01204211.v1.n1.2005.59.
Clavijo, A., Calderón, I.L., Paneque, P. 2010. Diversity of Saccharomyces and non-Saccharomyces yeasts in three red grape varieties cultured in the Serranía de Ronda (Spain) vine-growing region. International Journal of Food Microbiology. 143:241–245. DOI:10.1016/j.ijfoodmicro.2010.08.010.
Crouzier, D., Perrín, A., Torres, G., Dabouis, V., Debouzy, J. 2009. Pulsed electromagnetic field at 9.71 GHz increase free radical production in yeast (Saccharomyces cerevisiae). Pathologie Biologie 57: 245–251. doi.org/10.1016/j.patbio.2007.12.003.
Cucurachi, S., Tamis, W., Vijver, M., Peijnenburg, W., Bolte, J., de Snoo G. 2013. A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Env.International 51:116–140. doi.org/10.1016/ j.envint.2012. 10. 009.
Da-Motta, M. , Ferreira, J.B., Schuler, A. 2004. Static Magnetic Fields Enhancement of Saccharomyces cerevisae. Biotechnology Progress 20(2004) 393−396. doi.org/10.1021/bp034263j.
Deutmeyer, A., Raman, R., Murphy, P., Pandey, S. 2011. Effect of magnetic field on the fermentation kinetics of Saccharomyces cerevisiae. Advances in Bioscience and Biotechnology. 2:207-213. DOI: 10.4236/abb.2011.24031.
El-Zakhema, H., Lanoisellé, J., Lebovka, N., Nonus, M., Vorobiev, E. 2006. The early stages of Saccharomyces cerevisiae yeast suspensions damage in moderate pulsed electric fields. Colloids and Surfaces B: Biointerfaces. 47: 189–197. doi.org/10.1016/j.colsurfb.2005.12.010.
Fojt, L., Straṧák, L., Vetterl, V., Ṡmarda, J. Comparison of the low-frequency magnetic field effects on bacteria Escherichia coli, Leclercia adecarboxylata and Staphylococcus aureus. Bioelectrochemistry 63 (2004) 337– 341. doi.org/10.1016/j.bioelechem.2003.11.010.
Gos, P., Eicher, B., Kohli, J., Heyer, W. 2000. No mutagenic or recombinogenic effects of mobile phone fields at 900 MHz detected in the yeast Saccharomyces cerevisiae. Bioelectromagnetics 21(7):515–523. doi.org/10.1002/1521-186X(200010)21:7<515::AID-BEM5>3.0.CO;2-K.
Kovacs PE, Valentine RL, Álvarez PJ. (1997). The effect of static magnetic fields on biological systems: Implications for enhanced biodegradation. Critical reviews in environmental science and technology. 27 (1997) 319 – 382. doi.org/10.1080/10643389709388503.
Morata, A., Gómez-Cordovés, M.C., Calderón , F., Suárez. J.A. 2006. Effects of pH, temperature and SO2 on the formation of pyranoanthocyanins during red wine fermentation with two species of Saccharomyces. International Journal of Food Microbiology .106 ;123 – 129. DOI:10.1016/j.ijfoodmicro.2005.05.019.
Novák, J., Strašák, L., Fojt, L., Slaninova, I., Vetterl, V. 2007. Effects of low – frequency magnetic fields on the viability of yeast Saccharomyces cerevisisae. Bioelectrochemistry. 70:115–121. doi.org/10.1016/j.bioelechem.2006.03.029.
Loghavi, L., Sastry, K., Yousef, A. E. 2008. Effect of Moderate Electric Field Frequency on Growth Kinetics and Metabolic Activity of Lactobacillus acidophilus. Biotechnology Progress. 24;148-53. doi.org/10.1021/bp070268v.
Pankiewicz, U., Sujka, M., Włodarczyk-Stasiak, M., Mazek, A., Jamroz, J. Effect of pulse electric fields (PEF) on accumulation of magnesium and zinc ions in Saccharomyces cerevisiae cells. Food Chemistry. 157:125–131. doi.org/10.1016/j.foodchem.2014.02.028.
Ramírez AL, Gil J, Medina MH, Cruz B. (2016). Implementación en entorno Labview de un sistema multifuncional de medidas magnetoópticas y magnetoeléctricas para caracterización de materiales. BISTUA Revista de la Facultad de Ciencias Básicas, 14 (2): 116-125. doi: https://doi.org/10.24054/01204211.v2.n2.2016.2188.
Ruiz-Gómez, M. J., Prieto-Barcia, M.I., Ristori-Bogajo, Martínez-Morillo, M. 2004. Static and 50 Hz magnetic fields of 0.35 and 2.45 mT have no effect on the growth of Saccharomyces cerevisiae. Bioelectrochemistry. 64: 151 – 155. doi.org/10.1016/j.bioelechem.2004.04.003.
Sheehan, J., Himmel, M. 1999. Enzymes, energy, and the environment: Cellulose development in the emerging bioethanol industry. Biotechnology Progress. 15:817-827. DOI:10.1021/bp990110d.
Shu-Wei Zeng , Qi-Lin Huang , Si-Ming Zhao. 2014. Effects of microwave irradiation dose and time on Yeast ZSM-001 growth and cell membrane permeability. J.Food Control. 46:360-367doi.org/10.1016/j.foodcont.2014.05.053.
Valero, E., Moyano, L., Millan, M.C., Medina, M., Ortega, J.M. 2002. Higher alcohols and esters production by Saccharomyces crevisiae. Influence of the initial oxygenation of the grape must. Food Chemistry. 78:57– 61. doi.org/10.1016/S0308-8146(01)00361-2.
Zhang, X., Zhang, H., Zheng, C., Li, C., Zhang,X., Xiong, W. 2002. Extremely low frequency (elf) pulsed-gradient magnetic fields inhibit malignant tumor growth at different biological levels. Cell Biology International 26(7):599–603. doi.org/10.1006/cbir.2002.0883.
DOI: https://doi.org/10.24054/01204211.v2.n2.2019.3536
Enlaces refback
- No hay ningún enlace refback.