Harina de grillo Acheta domesticus: composición lipídica y posibilidades sobre su modificación por medio de la dieta

Pol Jon Álvarez, Javier Mateo, Javier Giráldez

Resumen


Actualmente la producción de insectos como alimento no étnico está incrementándose y podría convertirse en una producción intensiva de importancia en un futuro no muy lejano. La especie de grillo Acheta domesticus presenta una anatomía y una fisiología favorables para su producción en intensivo. Además, su harina tiene alto valor nutritivo, especialmente reconocido por su elevado contenido en proteína y minerales. Hay una creciente cantidad de estudios sobre la producción de este grillo y la composición de su harina, que demuestran el interés científico que suscita. Esta harina es una gran fuente de proteínas explotable en alimentación humana y animal, pero su contenido lipídico es también de gran importancia. La cantidad de grasa de la harina de grillo está entorno al 10-16% (sobre materia seca) y su perfil lipídico presenta aspectos muy favorables desde el punto de vista de la nutrición humana, dado que la mayoría de los ácidos grasos son insaturados, siendo mayoritarios los poliinsaturados. Ésta es una diferencia notable con la carne de las especies animales de abasto, las cuales representan una fuente de proteína habitual en alimentación humana, pero cuyos perfiles lipídicos contienen unos niveles muy inferiores de ácidos grasos poliinsaturados. Es remarcable también la posible modificación de la cantidad de grasa y el perfil de ácidos grasos de la harina de grillo mediante cambios en su dieta. Aún quedan muchos ámbitos que estudiar en profundidad para optimizar la producción de estos insectos, cuyo potencial para su empleo en la industria alimentaria es progresivo.

Texto completo:

PDF

Referencias


Ramos-Elorduy, J. (2004). La etnoentomología en la alimentación, la medicina y el reciclaje, p. 329-413. En J. Llorente, J. Morrone, O. Yáñez & I. Vargas (eds.). Biodiversidad Taxonomía y Biogeografía de Artrópodos de México. Hacia una síntesis de su conocimiento IV. México D.F, CONABIO/UNAM, pp.329-417.

Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G. y Vantomme, P. (2013). Edible Insects: Future Prospects For Food And Feed Security. Roma: Food and Agriculture Organization of the United Nations FAO Forestry Paper 171.

Kulma, M., Kouřimská, L., Plachý, V., Božik, M., Adámková, A., & Vrabec, V. (2019). Effect of sex on the nutritional value of house cricket, Acheta domestica L. Food Chemistry, 272, 267-272M.C.

Collavo, A., Glew, R.H., Huang, Y.S., Chuang, L.T., Bosse, R., & Paoletti, M.G. (2005). “House cricket small-scale farming”, en Paoletti, M. (ed) Ecological Implications of Minilivestock. Potential of Insects, Rodents, Frogs and Snails. Enfield: Science Publishers, pp. 519-545.

Miech, P. (2018). Cricket Farming An Alternative for Producing Food and Feed in Cambodia. Tesis, Department of Animal Nutrition and Management. Swedish University of Agricultural Sciences.

Nissen, L., Samaei, S., Babini, E. and Gianotti, A., 2020. Gluten free sourdough bread enriched with cricket flour for protein fortification: Antioxidant improvement and Volatilome characterization. Food Chemistry, 333, p.127410.

Kouřimská, L. and Adámková, A., 2021. Nutritional and sensory quality of edible insects. NFS Journal, 4 pp 22–26.

Igual, M., García-Segovia, P. and Martínez-Monzó, J., 2020. Effect of Acheta domesticus (house cricket) addition on protein content, colour, texture, and extrusion parameters of extruded products. Journal of Food Engineering, 282, p.110032.

Fernandez-Cassi, X., Supeanu, A., Vaga, M., Jansson, A., Boqvist, S. and Vagsholm, I., 2019. The house cricket (Acheta domesticus) as a novel food: a risk profile. Journal of Insects as Food and Feed, 5(2), pp.137-157.

Teo, L., & Woodring, J. (1985). Digestive enzymes in the house cricket Acheta domesticus with special reference to amylase. Comparative Biochemistry And Physiology Part A: Physiology, 82(4), 871-877

Chapman, R., Simpson, S., & Douglas, A. (2013). The insects (pp. 47-72). Cambridge: Cambridge University Press.

Blomquist, G., Borgeson, C., & Vundla, M. (1991). Polyunsaturated fatty acids and eicosanoids in insects. Insect Biochemistry, 21(1), 99-106.

Patton, R.L. (1967). Oligidic diets for Acheta domesticus (Orthoptera: Gryllidae). Annals Of The Entomological Society Of America, 60(6), pp.1238-1242.

Dossey, A., Morales-Ramos, J., & Rojas, M. (2016). Insects As Sustainable Food Ingredients (p. 180). Saint Louis: Elsevier Science & Technology.

Gasco, L., Biancarosa, I. and Liland, N., 2020. From waste to feed: A review of recent knowledge on insects as producers of protein and fat for animal feeds. Current Opinion in Green and Sustainable Chemistry, 23, pp.67-79.

Paul, A., Frederich, M., Megido, R., Alabi, T., Malik, P., Uyttenbroeck, R., Francis, F., Blecker, C., Haubruge, E., Lognay, G. and Danthine, S. (2017). Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. Journal of Asia-Pacific Entomology, 20(2), pp.337-340.

Sánchez-Muros, M., Barroso, F., & Manzano-Agugliaro, F. (2020). Insect meal as renewable source of food for animal feeding: a review. Journal of Cleaner Production (65), pp.16-27.

Singh, Y., Cullere, M., Kovitvadhi, A., Chundang, P. and Dalle Zotte, A., 2020. Effect of different killing methods on physicochemical traits, nutritional characteristics, in vitro human digestibility and oxidatie stability during storage of the house cricket (Acheta domesticus L.). Innovative Food Science & Emerging Technologies, 65, p.102444.

Bawa, M., Songsermpong, S., Kaewtapee, C., & Chanput, W. (2020). Effect of Diet on the Growth Performance, Feed Conversion, and Nutrient Content of the House Cricket. Journal Of Insect Science, 20(2).

Stanley-Samuelson, D., Jurenka, R., Cripps, C., Blomquist, G., & de Renobales, M. (1988). Fatty acids in insects: Composition, metabolism, and biological significance. Archives Of Insect Biochemistry And Physiology, 9(1), 1-33. M.

C. Gómez Candela, L.M. Bermejo López, V. Loria Kohen. (2011). Importance of a balanced omega 6/omega 3 ratio for the maintenance of health. Nutritional recommendations. Nutrición Hospitalaria, 26, pp. 323-329, 10.3305/nh.2011.26.2.5117

Tzompa-Sosa, D., Yi, L., van Valenberg, H., van Boekel, M., & Lakemond, C. (2014). Insect lipid profile: aqueous versus organic solvent-based extraction methods. Food Research International (62) pp.1087-1094.

Oonincx, D., van Broekhoven, S., van Huis, A., & van Loon, J. (2015). Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLOS ONE, 10(12), e0144601.

Moreiras, O., Carbajal, A., Cabrera, L., & Cuadrado, C. (2001). Tablas de composición de alimentos. Madrid: Ediciones Pirámide, pp. 89-91.

Oonincx, D., Laurent, S., Veenenbos, M., & Loon, J. (2019). Dietary enrichment of edible insects with omega 3 fatty acids. Insect Science, 27(3), 500-509.




DOI: https://doi.org/10.24054/01204211.v2.n2.2020.4442

Enlaces refback

  • No hay ningún enlace refback.