DEFINICIÓN DE CENTROIDES EN PATRONES DE HARTMANN MEDIANTE PROCESAMIENTO DIGITAL DE IMÁGENES

Andrés Fernando Jiménez López

Resumen


Con un sistema óptico que incluye una pantalla con un arreglo de agujeros se muestrea un frente de onda cuando éste, es iluminado con un haz de luz colimado. La reconstrucción del frente de onda refractado se determina con un algoritmo basado en análisis de Fourier, el cual depende de la detección de centroides de las manchas en la pantalla de observación mediante procesamiento digital de imágenes. El algoritmo desarrollado para la definición de los centroides de los patrones de Hartmann se describe en éste documento.

Texto completo:

PDF

Referencias


Malacara D., Optical Shop Testing, Second edition, John Wiley Sons, New York, pp. 367-396, 1992.

Platt B., Shack R. History and Principles of Shack-Hartmann Wavefront Sensing, Journal of Refractive Surgery, Volume 17, 2001.

Schwiegerling J. Historical Development of the Shack-Hartmann Wavefront Sensor, Department of Ophthalmology, University of Arizona, Tucson, Arizona, 2003.

Malacara D., Optical Shop Testing, Third Edition, John Wiley Sons, New York, pp. 361-394, 2007.

Mahajan V., Optical Imaging and Aberrations. Part I, Ray Geometrical Optics, SPIE Optical Engineering Press, ch 3. pp 141-147, 1998.

Southwell W. H., Wavefront estimation from wavefront slope measurements. J.Opt.Soc. Am. Vol. 70, No 8,pp 998-1006, 1980.

Yin X., Li X., Zhao L. and Fang Z., Automatic Centroid Detection for Shack-Hartmann Wavefront Sensor, IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Singapore, July 14-17, 2009.

Chen H. and Rao C., Accuracy analysis on centroid estimation algorithm limited by photon noise for point object, Optics Communications, vol.

, 2009, pp. 1526-1530.

Li H., Song H., Rao Ch. and Rao X. Accuracy analysis of centroid calculated by a modified center detection algorithm for Shack

Hartmann wavefront sensor, Optics Communications, vol. 281, 2008, pp. 750-755.

Baik S., Park S., Kim C., and Cha B., A center detection algorithm for Shack Hartmann wavefront sensor Optics Laser Technology, vol. 39, 2007, pp. 262-267.

Arulmozhivarman P., Praveen L., Ganesan A. Measurement of moments for centroid estimation in Shack Hartmann wavefront sensor a wavelet-based approach and comparison with other methods, Optik, vol.

, 2006, pp. 82-87.

Olarte O. and Mejía Y. A morphological based method to calculate the centroid spots of Hartmann patterns, Optics Communications, vol. 260, 2006, pp. 87-90.

Liang C., Liao W., Shen J., and Niu S., Measurement of Human Eye Aberration, IEEE, Electrical Engineering, 2009, pp. 3-7.

Van D., Jones R., Noise Effects On Centroid Tracker Aim Point Estimation. IEEE Transactions On Aerospace And Electronic Systems, vol. 24, 1988, pp. 177-185.

Park S. K., Baik S. H., A study on a fast measuring technique of wavefront using a Shack- Hartmann sensor, Optics Laser Technology,

, pp. 684- 687, 2002.

Arines J., and Ares J., Significance of thresholding processing in centroid based gradient wavefront sensors: effective modulation of the wavefront derivative, Optics Communications, vol. 237, pp. 257-266, 2004.

Jiang Z., Gong S., and Dai Y., Numerical study of centroid detection accuracy for Shack-Hartmann wavefront sensor Optics Laser Technology, vol. 38, 2006, pp. 614-619.

Jain A. Fundamentals of Digital Image Processing. Prentice-Hall International. 1989. ISBN:0-13- 332578-4. pp. 447-570.

González R. y Woods R. Tratamiento Digital de Imágenes. Addison- Wesley. 1996. ISBN:0-201-62576-8. pp. 447-570.

Yaniv Z. Edge Detection. School of Engineering and Computer Science. The Hebrew University, Jerusalem, Israel. 1999. pp. 1-14.

Hobbs P. Building Electro-Optical Systems. John Wiley Sons, pp 58-60, 2000.

Dhandra B., Malemath V., Mallikarjun H. and Hegadi R. Skew Detection in Binary Image Documents Based on Image Dilation and Region labeling Approach. The 18th International Conference on Pattern Recognition. IEEE Computer Society. 0-7695-2521-0/06. 2006.

Mejía Y. Hartmann test of small F/# convex mirrors. Optics ommunications 263. 2006. pp. 1724.




DOI: https://doi.org/10.24054/16927257.v19.n19.2012.161

Enlaces refback

  • No hay ningún enlace refback.