MICRO ROBOTS CONTROLADOS POR ACTUADORES ELECTROMAGNÉTICOS EN APLICACIONES MÉDICAS

Hernando León-Rodríguez, Daniel Murcia Rivera

Resumen


Los robots para aplicaciones médicas en la micro escala son la combinación de la tecnología de fabricación tradicional con tecnología de MEMS (micro electro-mechanical systems) sumadas con tecnologías como nano-tecnología, ingeniería biomédica y ciencia de los Materiales. Los robots en escala humana aplicados a la medicina son dispositivos desarrollados y adaptados con tecnologías de aplicaciones industriales. Sin embargo, en la actualidad la ciencia médica busca miniaturización para minimizar las cirugías, el dolor y el sangrado en el paciente; es aquí donde los micros robots son una tecnología emergente que permitirá llevar con micro-cámaras, micro-manipuladores, y nano-sensores a áreas del cuerpo que no requerirán cirugía sino la utilización de los orificios naturales del cuerpo. Este artículo presenta una revisión de los dispositivos robóticos médicos del presente y del futuro cercano en la salud.

Texto completo:

PDF

Referencias


Abbott Jake J., Zoltán Nagy, Felix Beyeler, and Bradley J. Nelson (2007); Robotics in the Small; IEEE Robotics & Automation Magazine.

Castillo cesar (2013), Cirugía de mínima invasividad; Disponible en: http://castillodelossantos.com; ; [Accedido: 20-may-2018]

Ciuti G., P. Valdastri, A. Menciassi and P. Dario, (2009); "Robotic magnetic steering and locomotion of capsule endoscope,".

Choi Hyunchul, Kyoungrae Cha, Jongho Choi, Semi Jeong, Seungmun Jeon, Gunhee Jang, Jong-oh Park, Sukho Park (2010); EMA system with gradient and uniform saddle coils for 3D locomotion of microrobot; Sensors and Actuators A 163, 410–417.

Cowen A. (2001), "The clinical risks of infection,".

Cugat Orphée, Jérôme Delamare, and Gilbert Reyne(2003); Magnetic Micro-Actuators and Systems (Magmas); IEEE Transactions on Magnetics, vol. 39, 5.

Davies B (2000); A review of robotics in surgery; Proc Instn Mech Engrs Vol 214 Part H; IMechE

Davinci Surgical System, Intuitive Surgical (2018); Disponible en:; https://www.intuitivesurgical.com; [Accedido: 20-may-2018]

Densford Fink (2017); Intuitive Surgical wins FDA not for daVinci X platform; Disponible en: http://www.massdevice.com; [Accedido: 30-may-2017]

Diller Eric, Joshua Giltinan, Guo Zhan Lum, Zhou Ye, and Metin Sitti (2016); Six-Degrees-of-Freedom Remote Actuation of Magnetic Microrobots; SAGE Journals, Vol 35, Issue 1-3.

Donald Bruce R., Christopher G. Levey, Igor Paprotny, and Daniela Rus (2010); Simultaneous Control of Multiple MEMS Microrobots; Springer-Verlag Berlin Heidelberg.

Falk Volkmar MD; Diegler, Anno MD, PhD; Walther, Thomas MD; Autschbach, Rudiger MD, PhD; Mohr, Friedrich W. MD, PhD (2000); Developments in robotic cardiac surgery; Current Opinion in Cardiology: November 2000 - Volume 15 - Issue 6 - pp 378-387.

Fumihito Arai, Toshiaki Endo, Ryuji Yamuchi, Toshio Fukuda (2006); 3D 6DOF Manipulation of Micro-object Using Laser Trapped Microtool; Proceedings of the 2006 IEEE International Conference on Robotics and Automation.

Fusco Stefano, Franziska Ullrich, Juho Pokki, George Chatzipirpiridis, Berna Ozkale, Kartik M Sivaraman, Olgac¸ Ergeneman, Salvador Pane & Bradley J Nelson; (2014); Microrobots: a new era in ocular drug delivery; Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland.

Go Gwangjun, Hyunchul Choi, Semi Jeong, Cheong Lee, Bang Ju Park, Seong Young Ko, Jong-Oh Park, Sukho Park (2014); Position-based magnetic field control for an electromagnetic actuated microrobot system; Sensors and Actuators A 205, 215–223.

Ham Stephanie Lemmo, Ehsan Atefi, Darcy Fyffe, Hossein Tavana (2015); Robotic Production of Cancer Cell Spheroids with an Aqueous Two-phase System for Drug Testing; J. Vis. Exp. (98), e52754, doi: 10.3791/52754.

Harris S J, F Arambula-Cosio, Q Mei, R D Hibberd, B L Davies, J E A Wickham, M S Nathan, B Kundu, (1997) The Probot—an active robot for prostate resection; Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine Vol 211, Issue 4, pp. 317 – 325.

Inguanti Mary (2006); The IntelliFill iv for Health Technology; PP&P.

Jeong Semi, Hyunchul Choi, Seong Young Ko, Jong-Oh Park, and Sukho Park (2012); Remote Controlled Micro-robots using Electromagnetic Actuation (EMA) Systems; The Fourth IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics.

Karas Chris S., E. Antonio Chiocca (2007); Neurosurgical robotics: a review of brain and spine applications; Journal of Robotic Surgery; March 2007, Volume 1, Issue 1, pp 39–43.

Kim MinJun, Anak Agung Julius, U Kei Cheang (2017); Microbiorobotics, Biologically Inspired Micro-scale Robotic Systems, Elsevier.

Kummer Michael P., Jake J. Abbott, Bradley E. Kratochvil, Ruedi Borer, Ali Sengul and Bradley J. Nelson (2010); OctoMag: An Electromagnetic System for 5-DOF Wireless Micromanipulation; IEEE Transactions on Robotics, Vol. 26, No. 6.

Mani Menon (2002); Technique of Da Vinci Robot-Assisted Anatomic Radical Prostatectomy; ELSEVIER SCIENCE INC.

McKesson; ROBOT-Rxm; © (2018) McKesson Corporation [En línea]. Disponible en: http://www.mckesson.com; [Accedido: 20-may-2018]

Microbotmedical, (2017); “Virob, Life in motion”; © Microbot Medical Inc. [En línea]. Disponible en: http://www.microbotmedical.com/; [Accedido: 20-may-2018]

Moreno Sierra Jesús, Carlos Núñez Mora, Mª Isabel Galante Romo, Sara Prieto Nogal, José López García Asenjo1, y Angel Silmi Moyano (2008).; Prostatectomía Radical Asistida por Robot Da Vinci®: Un Año de Experiencia en ll Hospital Clínico san Carlos; Laparoscopia y Robótica Arch. Esp. Urol., 61, 3 (385-396).

Nagy Zoltán, Raymond Oung, Jake J. Abbott, and Bradley J. Nelson (2008); Experimental Investigation of Magnetic Self-Assembly for Swallowable Modular Robots; IEEE/RSJ International Conference on Intelligent Robots and Systems.

Nathoo Narendra, M.D., Ph.D., M Cenk Çavuşoğlu, Ph.D., Michael A. Vogelbaum, M.D., Ph.D., Gene H. Barnett, M.D.(2005); In Touch with Robotics: Neurosurgery for the Future, Neurosurgery, Volume 56, Issue 3, 1 March 2005, Pages 421–433.

Nelson Bradley J., Ioannis K. Kaliakatsos, and Jake J. Abbott (2010); Microrobots for Minimally Invasive Medicine; Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland.

Nelson B. J., I. K. Kaliakatsos and J. J. Abbott, (2010); "Microrobots for Minimally Invasive Medicine," Annual Reviews, 2010.

Nguyen Van Du, Ji-Won Han, Young Jin Choi, Sunghoon Cho, Shaohui Zheng, Seong Young Ko, Jong-Oh Park, Sukho Park (2016); Active tumor-therapeutic liposomal bacteriobot combining a drug (paclitaxel)-encapsulated liposome with targeting bacteria (Salmonella Typhimurium); Sensors and Actuators B, 217–224.

Osborne J.A. (2017); ForHEalth Technologies Inc, USA, IntelliFill iv; Disponible en: https://www.gerpac.eu/intellifill-i-v; [Accedido: 20-may-2018]

Pandey Shilpa, Nitisha Payal,Aarti Sharma (2012); Robots and Robotically Assisted Surgeries; International Journal of Scientific Research Engineering & Technology (IJSRET); Volume 1 Issue 5 pp 294-298 August 2012

Park Sung Jun, Seung-Hwan Park, Sunghoon Cho, Deok-Mi Kim, Yeonkyung Lee, Seong Young Ko, Yeongjin Hong, Hyon E. Choy, Jung-Joon Min, Jong-Oh Park & Sukho Park (2013); New paradigm for tumor theranostic methodology using bacteria-based microrobot; Nature Scientific Reports.

Park S., K. Cha and J. Park (2010) "Development of Biomedical Microrobot for Intravascular Therapy," International Journal of Advanced Robotic Systems.

Park Sukho, Kyoungrae Cha, and Jongoh Park; (2010) Development of Biomedical Microrobot for Intravascular Therapy; International Journal of Advanced Robotic Systems, Vol. 7, No. 1.

Pawashe Chytra, Steven Floyd, and Metin Sitti (2009); Multiple magnetic microrobot control using electrostatic anchoring; Applied Physics Letters 94.

Peyer Kathrin E., Li Zhang and Bradley J. Nelson (2013); Bio-inspired magnetic swimming microrobots for biomedical applications; Nanoscale, 5, 1259.

Purcell E. M. (1976); Life at Low Reynolds Number; Harvard University, Cambridge, Massachusetts.

Romagnuolo J., P. Cotton, G. Eisen, J. Vargo and B. Petersen (2011); "Identifying and reporting risk factors for adverse events in endoscopy”.

Tewari Ashutosh, James Peabody, Richard Sarle, Guruswami Balakrishnan, Ashok Hemal, Alok Shrivastava, and

Villangca, Mark Jayson; Palima, Darwin; Banas, Andrew Rafael; Glückstad, Jesper (2016); Light-driven micro-tool equipped with a syringe function; Light: Science & Applications; 2016.

Wautelet Michel (2001); Scaling laws in the macro-, micro- and nanoworlds; European Journal of Physics, Eur. J. Phys. 22, 601–611.

Yesin K. Berk, Philipp Exner, Karl Vollmers, and Bradley J. Nelson (2005); Design and Control of In-Vivo Magnetic Microrobots; Springer-Verlag Berlin Heidelberg.

Yim S. and M. Sitti (2012); "Design and Rolling Locomotion of a Magnetically Actuated Soft Capsule Endoscope,".

Yu Chungseon, Juhyun Kim, Hyunchul Choi, Jongho Choi, Semi Jeong, Kyoungrae Cha, Jong-oh Park, Sukho Park (2010); Novel electromagnetic actuation system for three-dimensional locomotion and drilling of intravascular microrobot; Sensors and Actuators A 161 (2010) 297–304.

Zhang Li, Jake J. Abbott, Lixin Dong, Kathrin E. Peyer, Bradley E. Kratochvil, Haixin Zhang, Christos Bergeles, and Bradley J. Nelson (2009); Characterizing the Swimming Properties of Artificial Bacterial Flagella; Nano Letters, Vol. 9, No. 10, 3663-3667.




DOI: https://doi.org/10.24054/16927257.v32.n32.2018.3024

Enlaces refback

  • No hay ningún enlace refback.